Author Topic: New Features In Probe for EPMA  (Read 93172 times)

Probeman

  • Emeritus
  • *****
  • Posts: 2836
  • Never sleeps...
    • John Donovan
Re: New Features In Probe for EPMA
« Reply #90 on: October 03, 2016, 04:11:04 PM »
The latest version of Probe for EPMA now displays the initial absorbed current when measuring absorbed current with the TDI (time dependent intensity) mode as seen here:



Thanks to Gareth Seward who suggested it.
john
« Last Edit: April 12, 2020, 06:58:56 PM by John Donovan »
The only stupid question is the one not asked!

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: New Features In Probe for EPMA
« Reply #91 on: October 29, 2016, 05:56:23 PM »
The latest version of PFE 11.6.7 will pop up a small dialog and ask you for a description of your instrument and facility as seen here:



Simply enter a short description of your instrument and facility in the text field and you will not be bothered again. This field will be utilized in Sandrin Feig's EPMA Method Development Tool described here when importing wavescans from PFE:

http://probesoftware.com/smf/index.php?topic=743.msg5221#msg5221
« Last Edit: April 13, 2020, 10:34:12 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: New Features In Probe for EPMA
« Reply #92 on: November 10, 2016, 10:36:34 AM »
I added a new "type" for filament standby based on a request by Philipp Poeml.  Here are the new keywords in the Probewin.ini file in the [hardware] section:

      FilamentStandbyType=3
      FilamentStandbyExternalScript="C:\UserData\shutdown.bat"

Basically if the FilamentStandbyType is set to "3" and the FilamentStandbyExternalScript keyword points to a valid executable (*.exe, *.bat, etc.), and the Use Filament Standby checkbox is checked in the Automate! window, then Probe for EPMA will launch that app when the automation finishes.
« Last Edit: November 10, 2016, 01:22:23 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: New Features In Probe for EPMA
« Reply #93 on: November 22, 2016, 05:21:30 PM »
The latest version of Probe for EPMA can now scan and load column conditions for the 8x30 series of JEOL instruments. The following parameters are saved and reloaded with the exception of the save/load filament current for warming up the 8230 tungsten filaments (we are awaiting some additional information from JEOL before this is fully implemented).

"Condenser Coarse "         ,              33
"Condenser Fine   "         ,              269
"Magnification    "         ,              60000
"High Voltage     "         ,              15
"Probe Current    "         ,              4.001E-08
"Probe Diameter   "         ,              0
"Objective Lens   "         ,              10.92727
"Astigmation X    "         ,             -286
"Astigmation Y    "         ,             -150
"Image Shift X    "         ,             -193
"Image Shift Y    "         ,             -193
"Probe Scan       "         ,              1
"Sampling Mode    "         ,              0
"Scan Rotation    "         ,              345
"Filament Current "         ,              0
"Beam Position X  "         ,              0
"Beam Position Y  "         ,              0
"Probe Curr. Mode "         ,              1
"Column Mode      "         ,              1
"Image Channel    "         ,              1

I would like to thank Glenn Poirier, Henny Cathey and Ben Buse for their help and assistance with this.

Edit by John: I should mention that in order to utilize this new feature you will need to update to the latest JEOL driver.

Please contact Probe Software, or one of our microprobe specialists listed here, for an updated driver.

http://probesoftware.com/Support.html
« Last Edit: November 22, 2016, 08:20:54 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: New Features In Probe for EPMA
« Reply #94 on: December 20, 2016, 01:24:14 PM »
In a related change (PCC files), I've modified the text and tool tip help for the PCC file option as seen here in the Analytical Conditions dialog:



In addition, when the user now browses to a PCC file, the software automatically selects the Use Probe Column Condition option.
john
« Last Edit: April 12, 2020, 06:59:08 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: New Features In Probe for EPMA
« Reply #95 on: December 21, 2016, 11:30:16 AM »
Hi Anette,
I added output of keV values to the default wavescan sample output format (see Output menu).   The keV values are "calibrated" to the on-peak position of each element/spectrometer/crystal combination.

See PFE Help file for details.
john
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

Probeman

  • Emeritus
  • *****
  • Posts: 2836
  • Never sleeps...
    • John Donovan
Re: New Features In Probe for EPMA
« Reply #96 on: December 30, 2016, 09:09:28 AM »
Strictly speaking this is not a new feature, but it might be new to some of you...

I was recently performing some measurements of a complex REE silicate with significant fluorine and managed to confuse myself on a subtle point regarding halogens and oxygen stoichiometry.  So I thought I would share my learning experience...  Let's start with standards.  For reference please check appendix 1 "Calculation of a ... Hornblende Analysis" in "Rock Forming Minerals" by Deer, Howie and Zussman.

If you have a standard with significant replacement of stoichiometric oxygen with halogens, there are at least two ways to enter the compositional data in the Standard.exe app. For example, one can enter the composition as simple oxides plus the halogen, in which case one will see something like this in the standard composition dialog for a typical fluor-phlogopite:



The log window output is seen here:

St  282 Fluor-phlogopite (synthetic)
TakeOff = 40.0  KiloVolt = 15.0  Density =  2.879

Grown by S. Wones, Univ of Tenn
Oxide and Elemental Composition

Average Total Oxygen:       41.775     Average Total Weight%:  103.789
Average Calculated Oxygen:  41.778     Average Atomic Number:   11.202
Average Excess Oxygen:       -.003     Average Atomic Weight:   20.822
Oxygen Equiv. from Halogen:  3.798

ELEM:     SiO2     MgO   Al2O3     K2O       F       O
XRAY:      ka      ka      ka      ka      ka      ka
OXWT:   42.791  28.700  12.100  11.180   9.020   -.003
ELWT:   20.002  17.307   6.404   9.281   9.020  41.775
KFAC:    .1502   .1224   .0432   .0818   .0249   .1837
ZCOR:   1.3317  1.4138  1.4820  1.1342  3.6217  2.2746
AT% :   14.287  14.285   4.761   4.762   9.525  52.379
24 O:    6.546   6.545   2.182   2.182   4.364  24.000

Note that because the halogen-oxygen equivalence was *not* accounted for we have a high total in this standard 282. Alternatively we can enter the standard composition in elemental weight percents, in which case we will see something like this:



and this corresponding log window output:

St  284 Fluor-phlogopite (halogen corrected)
TakeOff = 40.0  KiloVolt = 15.0  Density =  2.879

Grown by S. Wones, Univ of Tenn
(applied F=O equivalence)
Oxide and Elemental Composition

Average Total Oxygen:       37.980     Average Total Weight%:   99.994
Average Calculated Oxygen:  41.778     Average Atomic Number:   11.324
Average Excess Oxygen:      -3.798     Average Atomic Weight:   21.063
Oxygen Equiv. from Halogen:  3.798

ELEM:     SiO2     MgO   Al2O3     K2O       F       O
XRAY:      ka      ka      ka      ka      ka      ka
OXWT:   42.791  28.700  12.100  11.180   9.020  -3.798
ELWT:   20.002  17.307   6.404   9.281   9.020  37.980
KFAC:    .1500   .1235   .0432   .0818   .0256   .1630
ZCOR:   1.3338  1.4016  1.4818  1.1346  3.5255  2.3298
AT% :   15.001  14.999   4.999   5.000  10.001  50.000
24 O:    7.200   7.200   2.400   2.400   4.800  24.000


Note that in this second case (standard 284), we have a good total, but that is because we entered a total oxygen value which reflects the replacement of oxygen by halogen in this mineral.

OK, now lets perform an analysis of these standards in Probe for EPMA, starting with the first standard, number 282, where we did *not* account for the replacement of oxygen by halogen (this is similar to how we might expect an unknown mineral to behave, since we wouldn't know in advance that there was replacement of stochiometric oxygen by halogen). So here is the analysis, of our 282 fluor-phlogopite with oxygen entered stoichiometrically:

St  282 Set   1 Fluor-phlogopite (synthetic)
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 30.0  Beam Size =    0

Average Total Oxygen:       41.478     Average Total Weight%:  103.307
Average Calculated Oxygen:  41.481     Average Atomic Number:   11.203
Average Excess Oxygen:       -.003     Average Atomic Weight:   20.825
Oxygen Equiv. from Halogen:  3.830  Halogen Corrected Oxygen:   37.648
Average ZAF Iteration:        4.00     Average Quant Iterate:     2.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction
Oxygen Equivalent from Halogens (F/Cl/Br/I), Not Subtracted in the Matrix Correction

St  282 Set   1 Fluor-phlogopite (synthetic), Results in Elemental Weight Percents
 
ELEM:       Si       F      Mg      Al       K       O
TYPE:     ANAL    ANAL    SPEC    SPEC    SPEC    CALC
BGDS:      LIN     LIN
TIME:    30.00   40.00     ---     ---     ---     ---
BEAM:    29.97   29.97     ---     ---     ---     ---

ELEM:       Si       F      Mg      Al       K       O   SUM 
     4  19.741   9.095  17.307   6.404   9.281  41.478 103.307

AVER:   19.741   9.095  17.307   6.404   9.281  41.478 103.307
SDEV:     .000    .000    .000    .000    .000    .000    .000
SERR:     .000    .000    .000    .000    .000    .000
%RSD:      .00     .00     .00     .00     .00     .00

PUBL:   20.002   9.020  17.307   6.404   9.281  41.775 103.789
%VAR:    -1.30     .83     .00     .00     .00    -.71
DIFF:    -.261    .075    .000    .000    .000   -.297
STDS:      160     284     ---     ---     ---     ---

STKF:    .1621   .0256     ---     ---     ---     ---
STCT:   1738.1   106.6     ---     ---     ---     ---

UNKF:    .1481   .0251     ---     ---     ---     ---
UNCT:   1588.2   104.8     ---     ---     ---     ---
UNBG:      3.4     9.4     ---     ---     ---     ---

ZCOR:   1.3328  3.6164     ---     ---     ---     ---
KRAW:    .9138   .9830     ---     ---     ---     ---
PKBG:   465.06   12.11     ---     ---     ---     ---


Note that as expected we have a high compositional total, because we have more oxygen specified in the standard than is actually present (due to replacement of some oxygen by fluorine).  So what can we do about this? Well, there's a cute feature in PFE under the Analytical | Analysis Options menu as seen here:



When we turn this flag on, the software will automatically calculate the oxygen equivalence of any halogens present *and* subtract this out *during* the matrix correction iteration (with the flag off the software simply reports the oxygen equivalence).

Interestingly this turns out to be especially important for fluorine due to the large absorption of fluorine Ka by oxygen. In fact if this oxygen equivalence subtraction is *not* performed during the matrix correction, one will see a 15% relative *over-estimation" of the fluorine concentration in the analysis!  (I really should write this up as a short paper with someone, so do let me know if you are interested in this idea.)

And therefore, when the halogen-oxygen equivalence correction is applied we get a normal looking analysis as seen here:

St  282 Set   1 Fluor-phlogopite (synthetic)
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 30.0  Beam Size =    0

Average Total Oxygen:       37.776     Average Total Weight%:   99.411
Average Calculated Oxygen:  37.778     Average Atomic Number:   11.328
Average Excess Oxygen:       -.003     Average Atomic Weight:   21.067
Oxygen Equiv. from Halogen:  3.736  Halogen Corrected Oxygen:   37.776
Average ZAF Iteration:        4.00     Average Quant Iterate:     2.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction
Oxygen Equivalent from Halogens (F/Cl/Br/I), Subtracted in the Matrix Correction

St  282 Set   1 Fluor-phlogopite (synthetic), Results in Elemental Weight Percents
 
ELEM:       Si       F      Mg      Al       K       O
TYPE:     ANAL    ANAL    SPEC    SPEC    SPEC    CALC
BGDS:      LIN     LIN
TIME:    30.00   40.00     ---     ---     ---     ---
BEAM:    29.97   29.97     ---     ---     ---     ---

ELEM:       Si       F      Mg      Al       K       O   SUM 
     4  19.771   8.873  17.307   6.404   9.281  37.776  99.411

AVER:   19.771   8.873  17.307   6.404   9.281  37.776  99.411
SDEV:     .000    .000    .000    .000    .000    .000    .000
SERR:     .000    .000    .000    .000    .000    .000
%RSD:      .00     .00     .00     .00     .00     .00

PUBL:   20.002   9.020  17.307   6.404   9.281  41.775 103.789
%VAR:    -1.15   -1.63     .00     .00     .00   -9.57
DIFF:    -.231   -.147    .000    .000    .000  -3.999
STDS:      160     284     ---     ---     ---     ---

STKF:    .1621   .0256     ---     ---     ---     ---
STCT:   1738.1   106.6     ---     ---     ---     ---

UNKF:    .1481   .0251     ---     ---     ---     ---
UNCT:   1588.2   104.8     ---     ---     ---     ---
UNBG:      3.4     9.4     ---     ---     ---     ---

ZCOR:   1.3348  3.5280     ---     ---     ---     ---
KRAW:    .9138   .9830     ---     ---     ---     ---
PKBG:   465.06   12.11     ---     ---     ---     ---


What about of standard 282 where we entered the correct amount of oxygen in the Standard.exe app?  Well, in this case we do *not* want to perform this oxygen-halogen equivalence correction, because then we would be performing a *double* correction as seen here:

St  284 Set   1 Fluor-phlogopite (halogen corrected)
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 30.0  Beam Size =    0

Average Total Oxygen:       34.317     Average Total Weight%:   96.125
Average Calculated Oxygen:  38.115     Average Atomic Number:   11.457
Average Excess Oxygen:      -3.798     Average Atomic Weight:   21.327
Oxygen Equiv. from Halogen:  3.699  Halogen Corrected Oxygen:   34.317
Average ZAF Iteration:        4.00     Average Quant Iterate:     2.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction
Oxygen Equivalent from Halogens (F/Cl/Br/I), Subtracted in the Matrix Correction

St  284 Set   1 Fluor-phlogopite (halogen corrected), Results in Elemental Weight Percents
 
ELEM:       Si       F      Mg      Al       K       O
TYPE:     ANAL    ANAL    SPEC    SPEC    SPEC    CALC
BGDS:      LIN     LIN
TIME:    30.00   40.00     ---     ---     ---     ---
BEAM:    29.96   29.96     ---     ---     ---     ---

ELEM:       Si       F      Mg      Al       K       O   SUM 
     2  20.033   8.783  17.307   6.404   9.281  34.317  96.125

AVER:   20.033   8.783  17.307   6.404   9.281  34.317  96.125
SDEV:     .000    .000    .000    .000    .000    .000    .000
SERR:     .000    .000    .000    .000    .000    .000
%RSD:      .00     .00     .00     .00     .00     .00

PUBL:   20.002   9.020  17.307   6.404   9.281  37.980  99.994
%VAR:    (.16) (-2.63)     .00     .00     .00   -9.64
DIFF:    (.03)  (-.24)    .000    .000    .000  -3.663
STDS:      284     284     ---     ---     ---     ---

STKF:    .1500   .0256     ---     ---     ---     ---
STCT:   1548.2   106.6     ---     ---     ---     ---

UNKF:    .1500   .0256     ---     ---     ---     ---
UNCT:   1548.2   106.6     ---     ---     ---     ---
UNBG:      4.2     9.0     ---     ---     ---     ---

ZCOR:   1.3359  3.4329     ---     ---     ---     ---
KRAW:   1.0000  1.0000     ---     ---     ---     ---
PKBG:   369.08   12.83     ---     ---     ---     ---


Therefore, in the case of a standard (e.g., 284), which is *already* corrected for this oxygen-halogen equivalence in the standard database, we would *not* want to perform this correction.  So we turn off the correction as seen here:

St  284 Set   1 Fluor-phlogopite (halogen corrected)
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 30.0  Beam Size =    0

Average Total Oxygen:       37.982     Average Total Weight%:   99.998
Average Calculated Oxygen:  41.780     Average Atomic Number:   11.324
Average Excess Oxygen:      -3.798     Average Atomic Weight:   21.063
Oxygen Equiv. from Halogen:  3.798  Halogen Corrected Oxygen:   34.184
Average ZAF Iteration:        3.00     Average Quant Iterate:     2.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction
Oxygen Equivalent from Halogens (F/Cl/Br/I), Not Subtracted in the Matrix Correction

St  284 Set   1 Fluor-phlogopite (halogen corrected), Results in Elemental Weight Percents
 
ELEM:       Si       F      Mg      Al       K       O
TYPE:     ANAL    ANAL    SPEC    SPEC    SPEC    CALC
BGDS:      LIN     LIN
TIME:    30.00   40.00     ---     ---     ---     ---
BEAM:    29.96   29.96     ---     ---     ---     ---

ELEM:       Si       F      Mg      Al       K       O   SUM 
     2  20.004   9.020  17.307   6.404   9.281  37.982  99.998

AVER:   20.004   9.020  17.307   6.404   9.281  37.982  99.998
SDEV:     .000    .000    .000    .000    .000    .000    .000
SERR:     .000    .000    .000    .000    .000    .000
%RSD:      .00     .00     .00     .00     .00     .00

PUBL:   20.002   9.020  17.307   6.404   9.281  37.980  99.994
%VAR:    (.01)   (.00)     .00     .00     .00     .01
DIFF:    (.00)   (.00)    .000    .000    .000    .002
STDS:      284     284     ---     ---     ---     ---

STKF:    .1500   .0256     ---     ---     ---     ---
STCT:   1548.2   106.6     ---     ---     ---     ---

UNKF:    .1500   .0256     ---     ---     ---     ---
UNCT:   1548.2   106.6     ---     ---     ---     ---
UNBG:      4.2     9.0     ---     ---     ---     ---

ZCOR:   1.3339  3.5255     ---     ---     ---     ---
KRAW:   1.0000  1.0000     ---     ---     ---     ---
PKBG:   369.08   12.83     ---     ---     ---     ---


Sorry, that if this is a little confusing, because, well, it is a little confusing!  :D

Next, as soon as I get back in the lab, I will perform a similar experiment on the standards analyzed as unknowns!
john
« Last Edit: April 12, 2020, 07:00:31 PM by John Donovan »
The only stupid question is the one not asked!

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: New Features In Probe for EPMA
« Reply #97 on: January 14, 2017, 12:28:55 PM »
Karsten Goemann and I were skyping last week discussing his new microprobe purchase (his lab will one of several that runs Probe for EPMA on both a Cameca and a JEOL instrument), and he mentioned that it would be nice if one could select the sample "basis" for editing multiple selected samples in the Elements/Cations dialog.

I agree this could be useful. Right now the software always loads the last selected sample as the sample basis for the parameters to apply to the other selected samples as seen here:



So I thought about it and modified the code to load any sample which is selected in the Elements/Cations dialog as seen here:



Note that if you select a new sample basis, the software will load that sample overwriting any changes you might have made, so only select the sample basis when you first load the dialog.  I guess I could add a "are you sure?" prompt, but let's see what you all think of this first cut at this feature.
john

Edit by John: this sample basis selection feature also works for the Standard Assignments (and interference, blank, TDI corrections) parameters also.
« Last Edit: April 12, 2020, 07:00:53 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

Karsten Goemann

  • Global Moderator
  • Professor
  • *****
  • Posts: 227
Re: New Features In Probe for EPMA
« Reply #98 on: March 27, 2017, 11:33:58 PM »
I've been using this now for some time and it works very well!
Many thanks John for implementing it.

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: New Features In Probe for EPMA
« Reply #99 on: May 14, 2017, 05:20:03 PM »
We recently added a new "standard filter" feature in Probe for EPMA (and CalcZAF), when selecting standards from the standard database based on a suggestion from a colleague.

To utilize this feature you will need to update CalcZAF or Probe for EPMA and use the Standard | Modify menu in the Standard app to edit the new material type field in the standard database as seen here:



These material types are merely text strings that the user specifies, for example "glass", or "oxide", or "silicate", or "phosphate", etc., etc. 

After one has edited these fields, then when the Add/Remove Standards menu is opened in Probe for EPMA (or CalcZAF), one merely selects the type of standards to display as seen here:



Enjoy and let me know what you all think.
john
« Last Edit: April 12, 2020, 07:01:13 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

Anette von der Handt

  • Global Moderator
  • Professor
  • *****
  • Posts: 351
    • UMN Probelab
Re: New Features In Probe for EPMA
« Reply #100 on: May 15, 2017, 05:31:05 AM »
Nice! So, I could also just enter "Std Block 1", or other custom groupings. This will make it easier to navigate my large standard database.
Against the dark, a tall white fountain played.

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: New Features In Probe for EPMA
« Reply #101 on: May 15, 2017, 07:02:59 AM »
Nice! So, I could also just enter "Std Block 1", or other custom groupings. This will make it easier to navigate my large standard database.

Hi Anette,
You could do that.  But I think reserving this database field for actual "material types" (silicate, oxide, glass, feldspar, etc) would be better.

For your sorting by std block purposes, I will add an additional button to allow users to import standards into the Add/Remove Standards dialog from any POS file.  Coming soon!
john
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: New Features In Probe for EPMA
« Reply #102 on: May 15, 2017, 09:04:41 PM »
Hi Anette,
OK, here is your request:



john
« Last Edit: April 12, 2020, 07:01:23 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: New Features In Probe for EPMA
« Reply #103 on: May 19, 2017, 10:23:04 PM »
The latest version of PFE (11.9.0) now outputs the standard description field when using the Report button from the Analyze! window (requested by Anette von der Handt) as seen here:

Zircon crystal (synthetic)
Specimen made by Lynn Boatner, ORNL, Solid State Div.
Flux grown, may contain some Mo impurities
ICP-MS by Alan Koenig, Hf 15 PPM, Y ~25 PPM, U 0 PPM, Th 0 PPM

HfSiO4 (Hafnon)
Synthetic material
Flux grown by John Hanchar

Ni2SiO4 (synthetic)
Specimen grown by Dr. M. Ojima, Tokyo Univ.
Flux method (may contain some Mo and Li)

Hafnium metal
From LBL
Zr by EPMA (J. Donovan)

Mg2SiO4 (magnesium olivine) synthetic
Specimen grown by H. Takei
Institute for Solid State Physics, Univ of Tokyo
See Takei, Jour. Crys. Growth, v. 23, 1974

Co2SiO4 (cobalt olivine) synthetic
Specimen grown by H. Takei, Institute for Solid State Physics, Univ of Tokyo
See Takei, Jour. Crys. Growth, v. 23, 1974
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: New Features In Probe for EPMA
« Reply #104 on: May 21, 2017, 02:20:33 PM »
To continue with the previous post here is the sort of output one can obtain from the actual "Report" button in the Analyze! window for a typical silicate glass run:

Probe for EPMA Xtreme Edition for Electron Probe Micro Analysis
Database File: C:\UserData\Donovan\Withers\Withers_01-31-2008.MDB
Database File Type: PROBE
DataFile Version Number: 7.4.2
Program Version Number: 11.9.0
Database File User Name: John Donovan
Database File Description: NSL-N6

Database Created: 1/31/2008 10:24:36 AM
Last Updated: 1/31/2008 10:24:36 AM
Last Modified: 5/13/2017 1:33:39 PM
Current Date and Time: 5/21/2017 2:18:19 PM
Nominal Beam: 30 (nA)
Faraday/Absorbed Averages: 1


Correction Method and Mass Absorption Coefficient File:
ZAF or Phi-Rho-Z Calculations
LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV

Current ZAF or Phi-Rho-Z Selection:
Armstrong/Love Scott (default)

Correction Selections:
Phi(pz) Absorption of Armstrong/Packwood-Brown 1981 MAS
Stopping Power of Love-Scott
Backscatter Coefficient of Love-Scott
Backscatter of Love-Scott
Mean Ionization of Berger-Seltzer
Phi(pz) Equation of Love-Scott
Reed/JTA w/ M-Line Correction and JTA Intensity Mod.
Fluorescence by Beta Lines Included

Un   12 Withers-NSL
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 10.0  Beam Size =   20
(Magnification (analytical) =  20000),        Beam Mode = Analog  Spot
(Magnification (default) =      600, Magnification (imaging) =    600)
Image Shift (X,Y):                                         .00,    .00

Compositional analyses were acquired on an electron microprobe (Cameca SX100 (TCP/IP Socket)) equipped with 5 tunable wavelength dispersive spectrometers.

Operating conditions were 40 degrees takeoff angle, and a beam energy of 15 keV.
The beam current was 10 nA, and the beam diameter was 20 microns.

Elements were acquired using analyzing crystals LLIF for Ti ka, Fe ka, Mn ka, Ca ka, PET for Cl ka, Ba la, K ka, TAP for Na ka, Mg ka, LTAP for F ka, Si ka, Al ka, TAP for Na ka, Mg ka, and PC1 for O ka.

The standards were MgO synthetic for Mg ka, O ka, TiO2 synthetic for Ti ka, MnO synthetic for Mn ka, NBS K-411 mineral glass for Si ka, Ca10(PO4)6Cl2 (halogen corrected) for Cl ka, Nepheline (partial anal.) for Na ka, Al ka, Diopside (Chesterman) for Ca ka, Orthoclase MAD-10 for K ka, Magnetite U.C. #3380 for Fe ka, and BaF2 (barium fluoride) for Ba la, F ka.

MgO synthetic
1. UCB # M3567, 99.8%, EPMA (UCB): Ca ~ 0.2%
2. C. M. Taylor, 99.98%, EPMA (UCB) Ca ~ 0.02%

SiO2 synthetic
Specimen from ESPI, 99.99%, EPMA (UCB): Al2O3 ~ 0.01%
Catalog #K4699M
Atomic Absorption (Chris Lewis):
Al=15 ppm +/- 5
Fe=6 ppm +/- 3
Mn=1.5 ppm +/- 0.3
Na=5 ppm +/- 3
Li= 2.3 ppm +/- 0.2

TiO2 synthetic
Specimen from Mimports, Lafayette, CA
Assumed stoichiometric
EPMA (UCB): Al2O3=0.02 (interference corrected)

Fluor-phlogopite (halogen corrected)
Grown by S. Wones, Univ of Tenn
(applied F=O equivalence)

Ca10(PO4)6Cl2 (halogen corrected)
Specimen from Alan Baumer, Univ of Nice, France
Hydrothermally grown
See Argiolas and Baumer, Can. Min., v. 16, pp 285-290, 1978

Nepheline (partial anal.)
Analysis by ISE Carmichael (Na, K)
Ca = 750 PPM (EPMA by JJD)

Diopside (Chesterman)
Twin Lakes, Fresno Co., CA
From Charles Chesterman (Ca Div. Mines)

Orthoclase MAD-10
Specimen from Chuck Taylor
Fe2O3=2.01% (EPMA by J. Donovan) (as FeO=1.88% + 0.13% O)
K2O=15.49%, Na2O=1.07% (Flame photometry by J. Hampel)
BaO=0.06%, Rb2O=0.03% (EPMA by J. Donovan)
Sr=12 ppm, Rb=600 ppm (Isotope dilution)

Magnetite U.C. #3380
Port Henry, NY
FeO=30.93% (ISE Carmichael)
Fe2O3=68.85%, FeO=30.92% (as FeO=92.73% + 6.90% O)
(Total FeO=92.73%, by EPMA, JJD)

MnO synthetic
Specimen from Michael Wittenauer (Purdue Univ.)
Starting mat'l 99.999%, SM # 317, 'skull melt' process
Mat. Res. Bull. 15, p 571, 1980
(possible intergrowths of Mn3O4 and small inclusions of Mn metal)
EPMA (UCB): SiO2=0.00, FeO=0.00, CaO=0.00, Al2O3=0

NiO synthetic
1. Specimen from Michael Wittenauer (Purdue Univ.)
Starting mat'l 99.999%, Boule WI, Arc Transfer
2. Specimen from G. Czemanske, USGS (Oct 12, 1984)
EPMA (UCB): FeO=0.05%
-----------------------------
All material assumed stoichiometric

NBS K-412 mineral glass
SRM 470, NIST
C.M. Taylor (Photometry?) FeO 2.77, Fe2O3 8.15
Total as FeO 10.10, Excess O 0.815
Na = 430 PPM (EPMA by JJD)

NBS K-411 mineral glass
SRM 470, NIST
C.M. Taylor (Photometry?) FeO 4.39, Fe2O3 11.23
Total as FeO 14.49, Excess O 1.12

BIR-1G Glass
USGS
see Meeker, et. al. "A Basalt Glass Standard for Multiple Microanalytical Techniques"

BaF2 (barium fluoride)
Single crystal, fluorescent

The counting time was 10 seconds for Cl ka, Ti ka, Mn ka, 20 seconds for K ka, Ba la, Ca ka, Si ka, Al ka, 40 seconds for F ka, Fe ka, 60 seconds for Na ka, Mg ka, and 120 seconds for O ka.

The intensity data was corrected for Time Dependent Intensity (TDI) loss (or gain) using a self calibrated correction for Na ka, K ka, Ti ka, Si ka, O ka.

The off peak counting time was 10 seconds for Cl ka, Mn ka, Ti ka, and 20 seconds for Ba la, F ka, K ka, O ka.

Off Peak correction method was Linear for Mn ka, Cl ka, Ba la, F ka, K ka, Low Only for Ti ka, and Exponential for O ka.

The MAN background intensity data was calibrated and continuum absorption corrected for Na ka, Fe ka, Ca ka, Si ka, Al ka, Mg ka.

See J.J. Donovan and T.N. Tingle, An Improved Mean Atomic Number Correction for  Quantitative Microanalysis in Journal of Microscopy, v. 2, 1, p. 1-7, 1996
Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices, American Mineralogist, v101, p1839-1853, (2016)

Unknown and standard intensities were corrected for deadtime. Standard intensities were corrected for standard drift over time.

Interference corrections were applied to Ba for interference by Ti, and to Ti for interference by Ba.

See J.J. Donovan, D.A. Snyder and M.L. Rivers, An Improved Interference Correction for Trace Element Analysis in Microbeam Analysis, 2: 23-28, 1993

Empirical Mass Absorption Coefficients were utilized to correct x-ray intensities for matrix corrections.

See Bastin, G.F. and Heijligers, H.J.M (1991) Quantitative electron probe microanalysis of ultra-light elements (boron - oxygen), in Electron Probe Quantitation, ed K.F.J. Heinrich and D.E. Newbury, Plenum Press, NY, 145-161

Also Bastin, G.F. and Heijligers, H.J.M. (1992) Present and future of light element analysis with electron beam instruments, Microbeam Analysis, 1, 61-73.

Current Mass Absorption Coefficients From:
LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV

  Z-LINE   X-RAY Z-ABSOR     MAC
      Na      ka      Na  5.6089e+02
      Na      ka      K   3.8110e+03
      Na      ka      Cl  2.5391e+03
      Na      ka      Ba  7.6213e+03
      Na      ka      F   5.1229e+03
      Na      ka      Ti  5.2439e+03
      Na      ka      Fe  8.1986e+03
      Na      ka      Mn  7.2518e+03
      Na      ka      Ca  4.3573e+03
      Na      ka      Si  1.4049e+03
      Na      ka      Al  1.0667e+03
      Na      ka      Mg  8.1441e+02
      Na      ka      O   4.1515e+03
      Na      ka      H   5.9317e+00
      K       ka      Na  3.7714e+02
      K       ka      K   1.7109e+02
      K       ka      Cl  1.1539e+03
      K       ka      Ba  7.2049e+02
      K       ka      F   2.1534e+02
      K       ka      Ti  2.4971e+02
      K       ka      Fe  4.1167e+02
      K       ka      Mn  3.5594e+02
      K       ka      Ca  1.9889e+02
      K       ka      Si  7.4506e+02
      K       ka      Al  5.9083e+02
      K       ka      Mg  5.0887e+02
      K       ka      O   1.6416e+02
      K       ka      H   1.1806e-01
      Cl      ka      Na  7.3634e+02
      Cl      ka      K   3.2806e+02
      Cl      ka      Cl  2.1561e+02
      Cl      ka      Ba  1.2824e+03
      Cl      ka      F   4.2282e+02
      Cl      ka      Ti  4.7326e+02
      Cl      ka      Fe  7.8172e+02
      Cl      ka      Mn  6.7972e+02
      Cl      ka      Ca  3.7594e+02
      Cl      ka      Si  1.4010e+03
      Cl      ka      Al  1.1255e+03
      Cl      ka      Mg  9.8203e+02
      Cl      ka      O   3.2567e+02
      Cl      ka      H   2.6576e-01
      Ba      la      Na  1.6022e+02
      Ba      la      K   7.2502e+02
      Ba      la      Cl  5.2953e+02
      Ba      la      Ba  3.3617e+02
      Ba      la      F   9.0427e+01
      Ba      la      Ti  1.1151e+02
      Ba      la      Fe  1.8314e+02
      Ba      la      Mn  1.5795e+02
      Ba      la      Ca  8.3453e+02
      Ba      la      Si  3.2826e+02
      Ba      la      Al  2.5758e+02
      Ba      la      Mg  2.1898e+02
      Ba      la      O   6.7822e+01
      Ba      la      H   4.2840e-02
      F       ka      Na  1.8327e+03
      F       ka      K   1.0658e+04
      F       ka      Cl  7.5904e+03
      F       ka      Ba  3.1554e+03
      F       ka      F   9.2209e+02
      F       ka      Ti  1.4588e+04
      F       ka      Fe  2.3374e+03
      F       ka      Mn  1.6117e+04
      F       ka      Ca  1.2415e+04
      F       ka      Si  4.2952e+03
      F       ka      Al  3.4208e+03
      F       ka      Mg  2.6263e+03
      F       ka      O   1.2440e+04
      F       ka      H   2.4805e+01
      Ti      ka      Na  1.5590e+02
      Ti      ka      K   7.0770e+02
      Ti      ka      Cl  5.1645e+02
      Ti      ka      Ba  3.2787e+02
      Ti      ka      F   8.7938e+01
      Ti      ka      Ti  1.0869e+02
      Ti      ka      Fe  1.7855e+02
      Ti      ka      Mn  1.5394e+02
      Ti      ka      Ca  8.1470e+02
      Ti      ka      Si  3.1977e+02
      Ti      ka      Al  2.5083e+02
      Ti      ka      Mg  2.1325e+02
      Ti      ka      O   6.5919e+01
      Ti      ka      H   4.1490e-02
      Fe      ka      Na  5.5397e+01
      Fe      ka      K   2.7665e+02
      Fe      ka      Cl  1.9695e+02
      Fe      ka      Ba  6.1414e+02
      Fe      ka      F   3.0620e+01
      Fe      ka      Ti  3.7689e+02
      Fe      ka      Fe  6.8270e+01
      Fe      ka      Mn  5.9704e+01
      Fe      ka      Ca  3.2161e+02
      Fe      ka      Si  1.1782e+02
      Fe      ka      Al  9.1605e+01
      Fe      ka      Mg  7.6877e+01
      Fe      ka      O   2.2548e+01
      Fe      ka      H   1.2590e-02
      Mn      ka      Na  6.8522e+01
      Mn      ka      K   3.3731e+02
      Mn      ka      Cl  2.4097e+02
      Mn      ka      Ba  6.5921e+02
      Mn      ka      F   3.8047e+01
      Mn      ka      Ti  4.5531e+02
      Mn      ka      Fe  8.3286e+01
      Mn      ka      Mn  7.2508e+01
      Mn      ka      Ca  3.9062e+02
      Mn      ka      Si  1.4510e+02
      Mn      ka      Al  1.1272e+02
      Mn      ka      Mg  9.4808e+01
      Mn      ka      O   2.8131e+01
      Mn      ka      H   1.6010e-02
      Ca      ka      Na  2.7733e+02
      Ca      ka      K   1.1737e+03
      Ca      ka      Cl  8.7515e+02
      Ca      ka      Ba  5.5026e+02
      Ca      ka      F   1.5790e+02
      Ca      ka      Ti  1.8677e+02
      Ca      ka      Fe  3.0742e+02
      Ca      ka      Mn  2.6528e+02
      Ca      ka      Ca  1.4983e+02
      Ca      ka      Si  5.5579e+02
      Ca      ka      Al  4.3892e+02
      Ca      ka      Mg  3.7616e+02
      Ca      ka      O   1.1972e+02
      Ca      ka      H   8.1770e-02
      Si      ka      Na  2.2375e+03
      Si      ka      K   9.7768e+02
      Si      ka      Cl  6.5835e+02
      Si      ka      Ba  3.3056e+03
      Si      ka      F   1.3201e+03
      Si      ka      Ti  1.4132e+03
      Si      ka      Fe  2.3053e+03
      Si      ka      Mn  2.0250e+03
      Si      ka      Ca  1.1465e+03
      Si      ka      Si  3.5048e+02
      Si      ka      Al  3.2132e+03
      Si      ka      Mg  2.9015e+03
      Si      ka      O   1.0337e+03
      Si      ka      H   1.0618e+00
      Al      ka      Na  3.3597e+03
      Al      ka      K   1.4794e+03
      Al      ka      Cl  9.9433e+02
      Al      ka      Ba  4.6512e+03
      Al      ka      F   2.0277e+03
      Al      ka      Ti  2.1374e+03
      Al      ka      Fe  3.4392e+03
      Al      ka      Mn  3.0278e+03
      Al      ka      Ca  1.7548e+03
      Al      ka      Si  5.4409e+02
      Al      ka      Al  4.0218e+02
      Al      ka      Mg  4.2884e+03
      Al      ka      O   1.5979e+03
      Al      ka      H   1.8043e+00
      Mg      ka      Na  5.2018e+03
      Mg      ka      K   2.3234e+03
      Mg      ka      Cl  1.5604e+03
      Mg      ka      Ba  6.3391e+03
      Mg      ka      F   3.1803e+03
      Mg      ka      Ti  3.2972e+03
      Mg      ka      Fe  5.2394e+03
      Mg      ka      Mn  4.6163e+03
      Mg      ka      Ca  2.7124e+03
      Mg      ka      Si  8.5871e+02
      Mg      ka      Al  6.3956e+02
      Mg      ka      Mg  4.8748e+02
      Mg      ka      O   2.5312e+03
      Mg      ka      H   3.1956e+00
      O       ka      Na  3.6300e+03 *
      O       ka      K   1.9369e+04
      O       ka      Cl  1.4300e+04 *
      O       ka      Ba  4.5194e+03
      O       ka      F   1.8500e+03 *
      O       ka      Ti  1.9900e+04 *
      O       ka      Fe  4.0000e+03 *
      O       ka      Mn  3.4700e+03 *
      O       ka      Ca  2.4600e+04 *
      O       ka      Si  8.7900e+03 *
      O       ka      Al  6.7200e+03 *
      O       ka      Mg  5.1700e+03 *
      O       ka      O   1.1999e+03
      O       ka      H   5.7430e+01
 * indicates empirical MAC

Empirical Mass Absorption Coefficients From:
C:\ProgramData\Probe Software\Probe for EPMA\EMPMAC.DAT

  Z-LINE   X-RAY Z-ABSOR     MAC
      O       ka      Na  3.6300e+03    Love et al. (1974)
      O       ka      Cl  1.4300e+04    Love et al. (1974)
      O       ka      F   1.8500e+03    Love et al. (1974)
      O       ka      Ti  1.9900e+04    Bastin  (1992)
      O       ka      Fe  4.0000e+03    Bastin  (1992)
      O       ka      Mn  3.4700e+03    Bastin  (1992)
      O       ka      Ca  2.4600e+04    Love et al. (1974)
      O       ka      Si  8.7900e+03    Bastin  (1992)
      O       ka      Al  6.7200e+03    Bastin  (1992)
      O       ka      Mg  5.1700e+03    Bastin  (1992)

Area Peak Factors were utilized to correct x-ray intensities for wavelength peak shift and/or shape changes for compound compositions by summing binary APF values.

See G. F. Bastin and H. J. M. Heijligers, Quantitative Electron Probe Microanalysis of Carbon in Binary Carbides, Parts I and II, X-Ray Spectr. 15: 135-150, 1986

Empirical Area Peak Factors (APF) From:
C:\ProgramData\Probe Software\Probe for EPMA\EMPAPF.DAT

  Z-LINE   X-RAY Z-ABSOR       APF   RE-NORM
      O       ka      Ti     .9796    1.0000    TiO2/Fe2O3/WSi/59.8
      O       ka      Fe     .9962    1.0000    Fe3O4/Fe2O3/WSi/59.8
      O       ka      Ca     .9700    1.0000    ----/Fe2O3/WSi/59.8
      O       ka      Si    1.0444    1.0000    SiO2/Fe2O3/WSi/59.8, Bastin
      O       ka      Al    1.0213    1.0000    Al2O3/Fe2O3/WSi/59.8, Bastin

Results are the average of 12 points and detection limits ranged from .005 weight percent for Mg ka to .006 weight percent for Si ka to .015 weight percent for Fe ka to .050 weight percent for O ka to .076 weight percent for Ba la.

Analytical sensitivity (at the 99% confidence level) ranged from .176 percent relative for Si ka to .455 percent relative for Al ka to 1.512 percent relative for K ka to 27.053 percent relative for Mn ka to 123.772 percent relative for Mg ka.

Oxygen equivalent from halogens (F/Cl/Br/I), was not subtracted in the matrix correction.


The quantitative blank correction was utilized.
The exponential or polynomial background fit was utilized.

See John J. Donovan, Heather A. Lowers and Brian G. Rusk, Improved electron probe microanalysis of trace elements in quartz, American Mineralogist, 96, 274­282, 2011

The matrix correction method was ZAF or Phi-Rho-Z Calculations and the mass absorption coefficients dataset was LINEMU   Henke (LBL, 1985) < 10KeV / CITZMU > 10KeV.

The ZAF or Phi-Rho-Z algorithm utilized was Armstrong/Love Scott (default).

See J. T. Armstrong, Quantitative analysis of silicates and oxide minerals: Comparison of Monte-Carlo, ZAF and Phi-Rho-Z procedures, Microbeam Analysis--1988, p 239-246


Many users find this type of output (and the associated .dat and .xlsx files) to be very useful when writing up results.  The exact output of course depends on the specific options utilized in your probe data file.
john
« Last Edit: May 21, 2017, 02:28:27 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"