Author Topic: Ward's Science Minerals  (Read 7144 times)

Anette von der Handt

  • Global Moderator
  • Professor
  • *****
  • Posts: 351
    • UMN Probelab
Ward's Science Minerals
« on: March 27, 2014, 02:35:14 PM »
Hi,

I have a variety of minerals from Ward's in the lab that I am contemplating to mount as possible (primary or secondary) mineral standards. Before I go through that exercise and find out that they do not make good standards, I thought I ask here first.

Does anyone has any opinion or experience with any of the following minerals as a good (or bad) microbeam standard (descriptions from the label):

- Hornblende (495917) Gore Mountain, New York
- Augite (495858) Harcourt Twp., Ontario[/li][/list]
- Diopside (495870) Fianarantsoa, Madagaskar
- Enstatite (492125), Bamble, Norway
- Microcline (495918) Richardson Quarry, Ontario
- Labradorite, Harney Co. Oregon
- Corundum (495868), Yogo Gulch, Montana (not sure about that one, I heard bad things about Corundum as standard in general, correct?)
- Dolomite (495871), Butte, Montana
- Calcite (495860), Santa Eulalia, Chihuahua, Mexico
- Sphalerite (495890), Picos de Europa, Spain
- Pyrite (495884), Huanzala, Peru
- Chalcopyrite 495863, Messina, Transvaal
- Chalcocite, Messina, Transvaal

Thank you!

Anette
Against the dark, a tall white fountain played.

Probeman

  • Emeritus
  • *****
  • Posts: 2838
  • Never sleeps...
    • John Donovan
Re: Ward's Science Minerals
« Reply #1 on: March 27, 2014, 03:20:18 PM »
Hi Anette,
This is exactly what I started trying to do a few years ago, but I only choose their wollastonite material from Willsboro, NY. It is very clean material.

Here are the analyses I did using our Chesterman diopside as a standard for Ca and SiO2 as a standard for Si (only printing out the statistically significant digits for the concentrations):

Un    5 Wollastonsite (Willsboro,NY) majors, traverse
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 20.0  Beam Size =   20
(Magnification (analytical) =  24000),        Beam Mode = Analog  Spot
(Magnification (default) =      600, Magnification (imaging) =    100)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:  13             Number of 'Good' Data Lines:  13
First/Last Date-Time: 10/03/2007 11:16:48 AM to 10/03/2007 11:43:26 AM
WARNING- Using Alternating On and Off Peak Acquisition

Average Total Oxygen:       41.304     Average Total Weight%:   99.866
Average Calculated Oxygen:  41.304     Average Atomic Number:   13.582
Average Excess Oxygen:        .000     Average Atomic Weight:   23.221
Average ZAF Iteration:        3.00     Average Quant Iterate:     2.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction

Un    5 Wollastonsite (Willsboro,NY) majors, traverse, Results in Elemental Weight Percents
 
ELEM:       Ca      Si       O
TYPE:     ANAL    ANAL    CALC
BGDS:      LIN     LIN
TIME:    60.00   60.00
BEAM:    20.01   20.01

ELEM:       Ca      Si       O   SUM 
   180    34.2    24.3  41.304    99.8
   181    34.3    24.1  41.188    99.6
   182    34.5    24.2  41.324   100.0
   183    34.2    24.1  41.110    99.4
   184    34.3    24.4  41.469   100.2
   185    34.2    24.2  41.203    99.6
   186    34.4    24.3  41.368   100.0
   187    34.4    24.2  41.311    99.9
   188    34.3    24.1  41.195    99.7
   189    34.3    24.0  41.026    99.3
   190    34.4    24.3  41.456   100.2
   191    34.6    24.3  41.461   100.3
   192    34.4    24.4  41.541   100.3

AVER:     34.3    24.2  41.304   99.87
SDEV:     .115    .121    .155    .334
SERR:     .032    .033    .043
%RSD:     .334    .498    .374
STDS:      358      14       0

STKF:    .1693   .4101   .0000
STCT:   2297.1 23650.7      .0

UNKF:    .3199   .2071   .0000
UNCT:   4339.3 11941.6      .0
UNBG:    126.5    44.9      .0

ZCOR:   1.0737  1.1697   .0000
KRAW:    1.889    .505    .000
PKBG:   35.305 267.612    .000

Un    5 Wollastonsite (Willsboro,NY) majors, traverse, Results Based on Sum of 2 Cations

ELEM:       Ca      Si       O   SUM 
   180    .995    1.01   3.005   5.005
   181    .999    1.00   3.001   5.001
   182    .999    1.00   3.001   5.001
   183    .997    1.00   3.003   5.003
   184    .993    1.01   3.007   5.007
   185    .995    1.01   3.005   5.005
   186    .996    1.00   3.004   5.004
   187    .998    1.00   3.002   5.002
   188    .999    1.00   3.001   5.001
   189    1.00    .999   2.999   4.999
   190    .994    1.01   3.006   5.006
   191    1.00    1.00   3.000   5.000
   192    .993    1.01   3.007   5.007

AVER:     .997    1.00   3.003  5.0032
SDEV:     .003    .003    .003    .003
SERR:     .001    .001    .001
%RSD:     .267    .265    .089

Range of Homogeneity (t-test) in +/- Elemental Weight Percent (Average of Sample):

ELEM:       Ca      Si
  60ci    .025    .029
  80ci    .039    .046
  90ci    .051    .060
  95ci    .063    .073
  99ci    .088    .103

Test of Homogeneity (t-test) at 1.0 % Precision (Average of Sample):

ELEM:       Ca      Si
  60ci     yes     yes
  80ci     yes     yes
  90ci     yes     yes
  95ci     yes     yes
  99ci     yes     yes

Level of Homogeneity (t-test) in +/- Percent (Average of Sample):

ELEM:       Ca      Si
  60ci      .1      .1
  80ci      .1      .2
  90ci      .1      .2
  95ci      .2      .3
  99ci      .3      .4

Range of Ideal Homogeneity (t-test) in +/- Elemental Weight Percent (Average of Sample) (Meisenkothen and Donovan):

ELEM:       Ca      Si
  60ci    .071    .030
  80ci    .110    .047
  90ci    .144    .062
  95ci    .176    .075
  99ci    .247    .106

Range of Actual Homogeneity (t-test) in +/- Elemental Weight Percent (Average of Sample) (Meisenkothen and Donovan):

ELEM:       Ca      Si
  60ci    .091    .106
  80ci    .141    .164
  90ci    .186    .216
  95ci    .227    .264
  99ci    .318    .370


Here are the trace elements, so you can see it is very clean:


Un    3 Wollastonsite (Willsboro,NY)
TakeOff = 40.0  KiloVolt = 20.0  Beam Current = 100.  Beam Size =   20
(Magnification (analytical) =  24000),        Beam Mode = Analog  Spot
(Magnification (default) =      600, Magnification (imaging) =    100)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:  10             Number of 'Good' Data Lines:  10
First/Last Date-Time: 10/02/2007 10:17:11 PM to 10/03/2007 04:34:37 AM
WARNING- Using Exponential Off-Peak correction for ti ka
WARNING- Using Average Off-Peak correction for al ka
WARNING- Using Alternating On and Off Peak Acquisition

Average Total Oxygen:       41.377     Average Total Weight%:  100.000
Average Calculated Oxygen:  41.377     Average Atomic Number:   13.577
Average Excess Oxygen:        .000     Average Atomic Weight:   23.214
Average ZAF Iteration:        2.00     Average Quant Iterate:     2.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction
Element Si is Calculated by Difference from 100%

Un    3 Wollastonsite (Willsboro,NY), Results in Elemental Weight Percents
 
ELEM:       Ti      Fe      Al      Mn      Mg      Si      Ca       O
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    DIFF    SPEC    CALC
BGDS:      EXP     LIN     AVG     LIN     LIN
TIME:  1200.00 1200.00 1200.00 1200.00 1200.00
BEAM:   100.09  100.09  100.09  100.09  100.09

ELEM:       Ti      Fe      Al      Mn      Mg      Si      Ca       O   SUM 
   135    n.d.    .018    .001    .011    .023  24.286  34.280  41.380 100.000
   136    .001    .018    n.d.    .010    .030  24.282  34.280  41.379 100.000
   137    .001    .020    .002    .013   .0322  24.275  34.280  41.376 100.000
   138    .002    .022    n.d.    .010   .0346  24.275  34.280  41.376 100.000
   139    .001    .021   .0005    .011   .0336  24.276  34.280  41.377 100.000
   140    .001    .022   .0007    .010   .0328  24.276  34.280  41.376 100.000
   141   .0007    .027   .0007    .012    .019  24.283  34.280  41.377 100.000
   142    .002    .020    n.d.    .012   .0363  24.274  34.280  41.376 100.000
   143    .001    .021   .0007    .012   .0371  24.272  34.280  41.375 100.000
   144    .002    .021    n.d.    .012   .0375  24.272  34.280  41.375 100.000

AVER:     .001    .021   .0006    .011   .0316  24.277  34.280  41.377   100.0
SDEV:     .001    .002    .001    .001    .006    .005    .000    .002    .000
SERR:     .000    .001    .000    .000    .002    .002    .000    .000
%RSD:   43.729  11.747  90.602   9.035  19.207    .020    .000    .004
STDS:       22     395     336     140      12       0       0       0

STKF:    .5616   .6862   .1159   .4052   .4215   .0000   .0000   .0000
STCT:  56847.7 30610.4  9737.5  4924.6 29326.9      .0      .0      .0

UNKF:    .0000   .0002   .0000   .0001   .0002   .0000   .0000   .0000
UNCT:      1.0     7.9      .3     1.1    11.7      .0      .0      .0
UNBG:     92.2    42.8    38.5     9.4    21.1      .0      .0      .0

ZCOR:   1.2726  1.1868  1.5126  1.2198  1.8866   .0000   .0000   .0000
KRAW:     .000    .000    .000    .000    .000    .000    .000    .000
PKBG:    1.011   1.186   1.009   1.121   1.553    .000    .000    .000

Detection limit at 99 % Confidence in Elemental Weight Percent (Single Line):

ELEM:       Ti      Fe      Al      Mn      Mg
   135    .001    .001    .001    .001    .001
   136    .001    .001    .001    .001    .001
   137    .001    .001    .001    .001    .001
   138    .001    .001    .001    .001    .001
   139    .001    .001    .001    .001    .001
   140    .001    .001    .001    .001    .001
   141    .001    .001    .001    .001    .001
   142    .001    .001    .001    .001    .001
   143    .001    .001    .001    .001    .001
   144    .001    .001    .001    .001    .001

AVER:     .001    .001    .001    .001    .001
SDEV:     .000    .000    .000    .000    .000
SERR:     .000    .000    .000    .000    .000

Percent Analytical Relative Error (One Sigma, Single Line):

ELEM:       Ti      Fe      Al      Mn      Mg
   135  -752.7     2.2    21.7     6.4     1.3
   136    20.6     2.2   -74.9     6.9     1.0
   137    19.5     2.0    14.8     5.4     1.0
   138    14.6     1.9    58.7     6.8      .9
   139    19.5     2.0    46.1     6.7      .9
   140    18.1     1.8    35.0     7.0     1.0
   141    38.6     1.5    35.6     6.1     1.6
   142    15.9     2.0   118.8     5.8      .9
   143    20.8     1.9    34.3     5.8      .9
   144    16.0     1.9    86.3     5.9      .9

AVER:    -56.9     1.9    37.6     6.3     1.0
SDEV:    244.6      .2    50.5      .6      .2
SERR:     77.3      .1    16.0      .2      .1

Detection Limit (t-test) in Elemental Weight Percent (Average of Sample):

ELEM:       Ti      Fe      Al      Mn      Mg
  60ci    .000    .001    .000    .000    .002
  80ci    .000    .001    .000    .000    .003
  90ci    .000    .002    .000    .001    .004
  95ci    .000    .002    .000    .001    .005
  99ci    .001    .003    .001    .001    .007

Analytical Sensitivity (t-test) in Elemental Weight Percent (Average of Sample):

ELEM:       Ti      Fe      Al      Mn      Mg
  60ci    .000    .000     ---    .000    .001
  80ci    .000    .000     ---    .000    .001
  90ci    .000    .000     ---    .000    .002
  95ci    .000    .000     ---    .000    .002
  99ci    .000    .001     ---    .000    .003


We have a lot of clean material so just ask if you need some.
« Last Edit: March 27, 2014, 03:23:38 PM by Probeman »
The only stupid question is the one not asked!

Paul Carpenter

  • Professor
  • ****
  • Posts: 46
    • Washington University Analytical Facilities
Re: Ward's Science Minerals
« Reply #2 on: December 18, 2014, 08:45:17 AM »
Minerals from Ward's are of two types, hand samples and research mineral samples. They are chosen for their relatively large size and euhedral morphology. There is no information about their chemical composition and really nothing can be assumed about their homogeneity.

An ideal microanalysis standard is free, has large grains, is homogeneous on both a micron and macro scale, and has  been characterized by a method in addition to EPMA.

Most materials being considered for EPMA standards fail one or more of these criteria, usually homogeneity is the problem.

The Smithsonian Microbeam Standards are a far superior set of materials because they have  been hand picked to identify clean grains, mounted and sigma ratio measured to assess intragrain and intergrain homogeneity, and analyzed by wet chemistry. Some of them are only available as small grains.

The wollastonite that John discusses is probably the best case material. It contains trace/minor Fe, Mn, etc. which is typical of many wollastonites (the crystal structure does not welcome more than trace concentrations of Mg, Fe, etc. compared to the augite and orthopyroxene structures). It may be a decent standard but it really requires a major effort to characterize the material that would be selected for distribution as a standard.

I would expect that the hornblende, like Kakanui hornblende, contains inclusions. That is the reality of natural minerals. That presents a real problem in stating what the composition "is" and issues regarding use of that material as a potential standard.

I support exploration of these materials. The ideal set of calibration materials for the geology community is end-member, stoichiometric, homogeneous materials available in large chunks. For example, I use Elba hematite as our primary Fe standard but always include secondary Fe standards in the PFE run. This Elba hematite is probably from the Caltech mineral collection, is not an internationally recognized EPMA standard, but is Fe-rich and homogeneous. The Smithsonian magnetite is an equivalent standard and could be used (the Smithsonian ilmenite is good but contains some inclusions of hematite and other phases). The Rockport fayalite standard likely contains grunerite and magnetite in the mineral separate used for the SMS wet chemical analysis, so it is decent material but the accepted analysis is faulty; this can only be corrected by cleaning the separate and reanalyzing the bulk material.

So the ideal standard setup is to have materials that have the highest element concentration expected in a probe run, but avoiding problem materials (Quartz: beam sensitive, Si peak shift vs. most minerals(?), Corundum: conductivity issues, peak shift, and so on). The accuracy of the calibration is then demonstrated by analysis of accepted standards such as the SMS materials (we use Kakanui hornblende).

The Ward's wollastonite could be a usable standard but I recall seeing BSE zoning in the large pieces. This ultimately, like many materials, disqualifies it because when you crush it for distribution, you have many grains with variation in the chemistry.  When a user mounts up 1-2 grains they implicitly assume those grains are the true composition when they probably aren't. This issue is a problem for the commercial standard mounts but notice that they mostly contain end member phases like Sb2S3 which are stoichiometric and homogeneous.

The SMS are free to anyone who requests them. There is material from a larger size fraction that can be requested but that is not necessarily what was used for the wet chemistry, and especially for Kakanui hornblende, the larger fraction has grains with larger inclusion of ilmenite, etc. So there is no easy answer (except synthetic glasses, which I can elaborate on).

Cheers,

Paul
Paul Carpenter
Washington University St. Louis

Probeman

  • Emeritus
  • *****
  • Posts: 2838
  • Never sleeps...
    • John Donovan
Re: Ward's Science Minerals
« Reply #3 on: December 19, 2014, 09:37:52 AM »
Minerals from Ward's are of two types, hand samples and research mineral samples. They are chosen for their relatively large size and euhedral morphology. There is no information about their chemical composition and really nothing can be assumed about their homogeneity.

Hi Paul,
I respectfully disagree. Homogeneity can be demonstrated by purity in many cases.

If one has crystalline SiO2 that is 99.99% pure, then the bulk chemistry is homogenous by definition. The same is true for pure elements, pure oxides, many pure sulfides and some simple compounds (though not all). 

The Ward's wollastonite is homogeneous because it is extremely pure with just a few traces.  Even if the trace elements varied by a considerable amount, the bulk chemistry would not change significantly because their contribution to the bulk chemistry is so insignificant.

And in fact, we have measured many individual grains and the trace chemistry, in the splits that we have, are all within the trace element precisions. So there is nothing that can contribute to variation in the bulk chemistry. Therefore it makes an excellent standard for Ca and Si and possibly oxygen as well.

And even if there were some tiny inclusions of another mineral, well then, because we *did not* average them into the bulk chemistry by using wet chemistry, we can simply avoid those inclusions in the EPMA and have the exact composition that pure CaSiO3 *must* have.

An ideal microanalysis standard is free [sic], has large grains, is homogeneous on both a micron and macro scale, and has  been characterized by a method in addition to EPMA.

Most materials being considered for EPMA standards fail one or more of these criteria, usually homogeneity is the problem.

The Smithsonian Microbeam Standards are a far superior set of materials because they have  been hand picked to identify clean grains, mounted and sigma ratio measured to assess intragrain and intergrain homogeneity, and analyzed by wet chemistry. Some of them are only available as small grains.

By this criteria, at least a few of the Smithsonian standards (e.g., Kakanui hornblende) are far from superior as demonstrated by investigators (Vicenzi, Fournelle, etc) who have shown the presence of many inclusions that were averaged into the bulk wet chemistry. Hand picked grains are great, but because the "hand picker" cannot see *into* each grain, they cannot know how many inclusions exist inside each grain. See this post for evidence of this:

http://probesoftware.com/smf/index.php?topic=216.msg1499#msg1499

The Ward's wollastonite could be a usable standard but I recall seeing BSE zoning in the large pieces.

I'd like to see evidence for this claim. Even if this wollastonite varied in trace elements (and they do not so far as we have determined), how could that trace element variation affect the bulk average atomic number of  CaSiO3 which is the BSE signal?  You may have been seeing electron channeling effects... which are quite common even in pure (crystalline) materials.

This issue is a problem for the commercial standard mounts but notice that they mostly contain end member phases like Sb2S3 which are stoichiometric and homogeneous.

Which is exactly the case for this particular Ward's wollastonite!  You are welcome to any amount of this cleaned material for further investigation in your lab.
« Last Edit: December 19, 2014, 03:49:53 PM by John Donovan »
The only stupid question is the one not asked!

Probeman

  • Emeritus
  • *****
  • Posts: 2838
  • Never sleeps...
    • John Donovan
Re: Ward's Science Minerals
« Reply #4 on: September 12, 2018, 09:05:49 PM »
Necroing an old thread here, but I went looking for the Willsboro, NY wollastonite, and while Ward's don't sell it as a standard anymore, I was able to buy some in bulk. There are calcite inclusions to work around, but the wollastonite itself is a fairly promising Ca standard. Also, since I bought in bulk, I now have ~1kg of material, which is about 0.99kg more than I'll ever need. If you want some, contact me off-line.

Apparently, great minds think alike...   ;)

I bought this material from Ward's about 15 years ago, crushed it and have a large supply of grains. And yes, it's very pure, a good standard material, just by assuming stoichiometry.

I'll try and find my trace element analyses of it and post them.
john
The only stupid question is the one not asked!

Probeman

  • Emeritus
  • *****
  • Posts: 2838
  • Never sleeps...
    • John Donovan
Re: Ward's Science Minerals
« Reply #5 on: September 13, 2018, 09:39:57 AM »
I found the trace data on the Ward's Willsboro wollastonite. It appears I did this analysis 11 years ago:

Un    3 Wollastonsite (Willsboro,NY)
TakeOff = 40.0  KiloVolt = 20.0  Beam Current = 100.  Beam Size =   20
(Magnification (analytical) =  24000),        Beam Mode = Analog  Spot
(Magnification (default) =      600, Magnification (imaging) =    100)
Image Shift (X,Y):                                         .00,    .00

Formula Based on Sum of Cations = 8.00   Oxygen Calc. by Stoichiometry
Number of Data Lines:  10             Number of 'Good' Data Lines:  10
First/Last Date-Time: 10/02/2007 10:17:11 PM to 10/03/2007 04:34:37 AM
WARNING- Using Exponential Off-Peak correction for ti ka
WARNING- Using Average Off-Peak correction for al ka
WARNING- Using Alternating On and Off Peak Acquisition

Average Total Oxygen:       60.613     Average Total Weight%:  100.000
Average Calculated Oxygen:  19.293     Average Atomic Number:   12.437
Average Excess Oxygen:      41.320     Average Atomic Weight:   20.735
Average ZAF Iteration:        2.00     Average Quant Iterate:     2.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction
Oxygen Calculated by Cation Stoichiometry Also Includes 41.320 Oxygen as a Specified Concentration
Element Si is Calculated by Difference from 100%

Un    3 Wollastonsite (Willsboro,NY), Results in Elemental Weight Percents
 
ELEM:       Ti      Fe      Al      Mn      Mg      Si      Ca       O
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    DIFF    SPEC    CALC
BGDS:      EXP     LIN     AVG     LIN     LIN
TIME:  1200.00 1200.00 1200.00 1200.00 1200.00     ---     ---     ---
BEAM:   100.09  100.09  100.09  100.09  100.09     ---     ---     ---

ELEM:       Ti      Fe      Al      Mn      Mg      Si      Ca       O   SUM 
   135    .000    .018    .001    .011    .026   4.824  34.502  60.617 100.000
   136    .001    .019    .000    .010    .034   4.819  34.502  60.615 100.000
   137    .001    .020    .002    .013    .036   4.812  34.502  60.612 100.000
   138    .002    .022    .000    .010    .039   4.812  34.502  60.612 100.000
   139    .001    .021    .001    .011    .038   4.813  34.502  60.613 100.000
   140    .001    .022    .001    .010    .037   4.813  34.502  60.613 100.000
   141    .001    .027    .001    .012    .021   4.822  34.502  60.614 100.000
   142    .002    .020    .000    .012    .041   4.810  34.502  60.612 100.000
   143    .001    .021    .001    .012    .042   4.809  34.502  60.611 100.000
   144    .002    .021    .000    .012    .042   4.809  34.502  60.611 100.000

AVER:     .001    .021    .001    .011    .036   4.814  34.502  60.613 100.000
SDEV:     .001    .002    .001    .001    .007    .005    .000    .002    .000
SERR:     .000    .001    .000    .000    .002    .002    .000    .001
%RSD:    43.73   11.75   90.60    9.04   19.21     .11     .00     .00
STDS:       22     395     336     140      12     ---     ---     ---

STKF:    .5616   .6862   .1160   .4052   .4215     ---     ---     ---
STCT:  56847.7 30610.4  9737.5  4924.6 29326.9     ---     ---     ---

UNKF:    .0000   .0002   .0000   .0001   .0002     ---     ---     ---
UNCT:      1.0     7.9      .3     1.1    11.7     ---     ---     ---
UNBG:     92.2    42.8    38.5     9.4    21.1     ---     ---     ---

ZCOR:   1.2627  1.1927  1.6722  1.2235  2.1256     ---     ---     ---
KRAW:    .0000   .0003   .0000   .0002   .0004     ---     ---     ---
PKBG:     1.01    1.19    1.01    1.12    1.55     ---     ---     ---

Detection limit at 99 % Confidence in Elemental Weight Percent (Single Line):

ELEM:       Ti      Fe      Al      Mn      Mg
   135    .001    .001    .001    .001    .001
   136    .001    .001    .001    .001    .001
   137    .001    .001    .001    .001    .001
   138    .001    .001    .001    .001    .001
   139    .001    .001    .001    .001    .001
   140    .001    .001    .001    .001    .001
   141    .001    .001    .001    .001    .001
   142    .001    .001    .001    .001    .001
   143    .001    .001    .001    .001    .001
   144    .001    .001    .001    .001    .001

AVER:     .001    .001    .001    .001    .001
SDEV:     .000    .000    .000    .000    .000
SERR:     .000    .000    .000    .000    .000

Percent Analytical Relative Error (One Sigma, Single Line):

ELEM:       Ti      Fe      Al      Mn      Mg
   135  -752.7     2.2    21.7     6.4     1.3
   136    20.6     2.2   -74.9     6.9     1.0
   137    19.5     2.0    14.8     5.4     1.0
   138    14.6     1.9    58.7     6.8      .9
   139    19.5     2.0    46.1     6.7      .9
   140    18.1     1.8    35.0     7.0     1.0
   141    38.6     1.5    35.6     6.1     1.6
   142    15.9     2.0   118.8     5.8      .9
   143    20.8     1.9    34.3     5.8      .9
   144    16.0     1.9    86.3     5.9      .9
The only stupid question is the one not asked!

BenjaminWade

  • Professor
  • ****
  • Posts: 199
Re: Ward's Science Minerals
« Reply #6 on: September 13, 2018, 05:19:21 PM »
Hi all
I can also confirm I have not seen any BSE zoning in Willsboro wollastonite. I acquired a number of samples off ebay earlier this year for U-Pb garnet dating and had a look at a number of chips on the SEM prior to analysis. It appeared to be quite homogeneous on BSE at least.

Cheers

Paul Carpenter

  • Professor
  • ****
  • Posts: 46
    • Washington University Analytical Facilities
Re: Ward's Science Minerals
« Reply #7 on: September 24, 2018, 12:42:52 PM »
We use Gates wollastonite, obtained from Mike Shaffer when he ran the University of Oregon lab. It is an excellent standard but is an in-house secondary standard and I am not aware of any other lab using the material. Many wollastonites contain variable levels of elements such as Mg, Mn, and Fe (2+ cation substitution), and since it is a metamorphic mineral, there can be inclusions of calcite, grossular, diopside, and other skarn phases.

The real issue is that if material from Ward's or from the Smithsonian mineral collection is to be used as an EPMA standard, it needs to be screened for intra and inter-grain homogeneity, observed to be free of inclusions, and if possible analyzed by a technique besides the electron microprobe. Many of us comment on the homogeneity but it is based on the few grains we received or mounted up for analysis. The method used by Jarosewich was to mount up ~100 grains at a larger size fraction than the distributed material. The sigma ratio data supplied with the SMS data sheet summarizes the best and worst grain variations from analyses on that mount.

A given hand sample-sized piece is typical of the Smithsonian material, so there is nothing special with the exception that all distributed material comes from that exact master sample, and is therefore "traceable" in that sense. It is therefore important to distribute from that sample that was characterized. If people also purchase from Ward's the same material, there is no control on whether that sample really is equivalent to that bought by the person that did the initial screening.

So I agree with John that the wollastonite has great potential. I think if we continue this dialog with Tim Rose at the Smithsonian, we could make progress on EPMA standards.

Cheers,

Paul

Paul Carpenter
Washington University St. Louis

Probeman

  • Emeritus
  • *****
  • Posts: 2838
  • Never sleeps...
    • John Donovan
Re: Ward's Science Minerals
« Reply #8 on: September 24, 2018, 12:53:14 PM »
We use Gates wollastonite, obtained from Mike Shaffer when he ran the University of Oregon lab. It is an excellent standard but is an in-house secondary standard and I am not aware of any other lab using the material. Many wollastonites contain variable levels of elements such as Mg, Mn, and Fe (2+ cation substitution), and since it is a metamorphic mineral, there can be inclusions of calcite, grossular, diopside, and other skarn phases.

The real issue is that if material from Ward's or from the Smithsonian mineral collection is to be used as an EPMA standard, it needs to be screened for intra and inter-grain homogeneity, observed to be free of inclusions, and if possible analyzed by a technique besides the electron microprobe. Many of us comment on the homogeneity but it is based on the few grains we received or mounted up for analysis. The method used by Jarosewich was to mount up ~100 grains at a larger size fraction than the distributed material. The sigma ratio data supplied with the SMS data sheet summarizes the best and worst grain variations from analyses on that mount.

A given hand sample-sized piece is typical of the Smithsonian material, so there is nothing special with the exception that all distributed material comes from that exact master sample, and is therefore "traceable" in that sense. It is therefore important to distribute from that sample that was characterized. If people also purchase from Ward's the same material, there is no control on whether that sample really is equivalent to that bought by the person that did the initial screening.

So I agree with John that the wollastonite has great potential. I think if we continue this dialog with Tim Rose at the Smithsonian, we could make progress on EPMA standards.

I would be more than pleased to send the Smithsonian my Ward's Science wollastonite material.  I have a large hand specimen and a vial of crushed and somewhat separated material.

Just FYI, I had a chat with an emeritus professor a long time ago who pointed out to me that it's pronounced *wo*llastonite, not wo*llas*tonite, because that's how the dude's name was pronounced.  I had not known that!
john
« Last Edit: September 24, 2018, 01:27:40 PM by Probeman »
The only stupid question is the one not asked!