Author Topic: Specifying Unanalyzed Elements For a Proper Matrix Correction  (Read 48122 times)

Gseward

  • Global Moderator
  • Professor
  • *****
  • Posts: 134
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #15 on: June 18, 2015, 09:39:59 AM »
Many thanks John. I think this will be a useful feature.

Gareth

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #16 on: June 18, 2015, 09:49:52 AM »
The formula by difference feature is nice because the software will automatically add the elements in the formula that you aren't analyzing for. However, for the element by difference, by stoichiometry, etc., I will admit that it is not entirely obvious how to add these unanalyzed elements to the element drop down lists as seen here.



The secret tip is that one should add all elements (WDS, EDS, and unanalyzed elements) from the Elements/Cations dialog, by simply clicking on an empty element row as seen here:



and then adding the desired unanalyzed elements *without* an x-ray line as seen here:

John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

AndrewLocock

  • Professor
  • ****
  • Posts: 104
    • University of Alberta Electron Microprobe Laboratory
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #17 on: June 25, 2015, 10:16:40 AM »
There is something in the way PfE calculates C in carbonates that I do not understand.

From the 2013 example of kutnohorite at: http://probesoftware.com/smf/index.php?topic=92.msg523#msg523
and ignoring the P content (as its abundance is very low):

Wt% element (from PfE):
    Ca    Mn    Fe    Mg     C     O     SUM
#21   19.734   22.026   0.382   1.385   11.333   45.532   100.392
#22   19.850   21.699   0.401   1.377   11.354   45.532   100.213
#23   19.615   21.856   0.321   1.278   11.366   45.396   99.832
#24   19.767   21.962   0.363   1.423   11.338   45.574   100.427

I calculate the molar proportions using the atomic weights from Wieser and Berglund (2009) Pure Appl. Chem. 81, 2131-2156. For the general formula MCO3, the stoichiometric proportion of C should exactly equal the sum of the divalent cations. Similarly, oxygen should be present at exactly three times the proportion of C (or M).

Molar proportions from above data         Calculated values                  
 Ca    Mn    Fe    Mg     C     O       C = sum M2+   O = 3*(sum M2+)
0.4924   0.4009   0.0068   0.0570   0.9436   2.8459      0.9571      2.8714
0.4953   0.3950   0.0072   0.0567   0.9453   2.8459      0.9541      2.8623
0.4894   0.3978   0.0057   0.0526   0.9463   2.8374      0.9456      2.8367
0.4932   0.3998   0.0065   0.0585   0.9440   2.8485      0.9580      2.8741

The molar proportions that I calculate by stoichiometry on the basis of the divalent cations do not match those reported by PfE in the example reported. Consequently, the weight proportions of C and O, and sums, that I calculate are:

Calculated by stoichiometry for the formula MCO3:      
wt% C   wt% O   new sum
11.50   45.94   100.96
11.46   45.79   100.58
11.36   45.39   99.81
11.51   45.98   101.00

Calculated formula proportions:                  
    Ca    Mn    Fe    Mg     C     O    sum
#21   0.514   0.419   0.007   0.060   1.000   3.000   5.000
#22   0.519   0.414   0.008   0.059   1.000   3.000   5.000
#23   0.518   0.421   0.006   0.056   1.000   3.000   5.000
#24   0.515   0.417   0.007   0.061   1.000   3.000   5.000

It is not clear to me what the PfE software is doing, and why the molar proportions that it reports do not exactly match the formula MCO3. From PfE:
    Ca    Mn    Fe    Mg     C     O     SUM
#21   0.522   0.425   0.007   0.060   1.000   3.016   5.030
#22   0.524   0.418   0.008   0.060   1.000   3.010   5.020
#23   0.517   0.420   0.006   0.056   1.000   2.998   4.997
#24   0.522   0.423   0.007   0.062   1.000   3.017   5.031


I have a few hundred carbonate analyses acquired with PfE - except where the analytical total is exceedingly close to 100.00, the CO2 contents reported by PfE do not match stoichiometric values. PfE appears to systematically overestimate the proportion of CO2 for analyses that have low totals, and to underestimate in the case of high totals, in comparison to stoichiometric calculations. A graph of these data follows as a PDF attachment.

Edit by John: Link to post fixed
« Last Edit: June 25, 2015, 10:26:38 AM by John Donovan »

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #18 on: June 25, 2015, 10:49:34 AM »
From the 2013 example of kutnohorite at: http://probesoftware.com/smf/index.php?topic=92.msg523#msg523
and ignoring the P content (as its abundance is very low):

Wt% element (from PfE):
    Ca    Mn    Fe    Mg     C     O     SUM
#21   19.734   22.026   0.382   1.385   11.333   45.532   100.392
#22   19.850   21.699   0.401   1.377   11.354   45.532   100.213
#23   19.615   21.856   0.321   1.278   11.366   45.396   99.832
#24   19.767   21.962   0.363   1.423   11.338   45.574   100.427

Hi Andrew,
Interesting, it will be fun to figure this out!  I can't find the original Kutnahorite data anyway, so let's start with another Kutnahorite example that I can find the data for! 

The first thing I might note is that you have to be aware of the various ways to calculate elemnts by stoichiometry. For example in the calcite example posted previously I specified carbon by ratio to Ca 1 : 1, and that makes sense for calcite since the other cations are traces. 

But for Kutnahorite and any other mixed cation carbonate, we'll instead want to specify carbon relative something else. In these non-pure calcite samples we'll want to specify carbon by stoichiometry to calculated oxygen, for example 0.333 C to 1 O (because that is CO3) as seen here.

St  143 Set   1 Kutnahorite (Harvard #85670)
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 30.0  Beam Size =    2

Specimen from Harvard Mineralogical Museum (Carl Francis)
Locality: Franklin, NJ
See Garrels, et al., 1980 AJS 258, 402-418
Also J. V. Smith, Am. Jour. Sci. 1960
Number of Data Lines:   4             Number of 'Good' Data Lines:   4
First/Last Date-Time: 06/15/2008 10:27:04 AM to 06/15/2008 10:28:50 AM

Average Total Oxygen:         .000     Average Total Weight%:  100.343
Average Calculated Oxygen:    .000     Average Atomic Number:   13.960
Average Excess Oxygen:        .000     Average Atomic Weight:   21.115
Average ZAF Iteration:        3.00     Average Quant Iterate:     2.00

Element C is Calculated  .333 Atoms Relative To 1.0 Atom of O

St  143 Set   1 Kutnahorite (Harvard #85670), Results in Elemental Weight Percents
 
ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9  19.709  22.027    .382   1.385    .021  11.398  45.594 100.515
    10  19.825  21.700    .401   1.376    .016  11.398  45.594 100.310
    11  19.592  21.858    .321   1.278   -.008  11.398  45.594 100.032
    12  19.742  21.963    .363   1.422    .032  11.398  45.594 100.514

AVER:   19.717  21.887    .367   1.365    .015  11.398  45.594 100.343
SDEV:     .096    .143    .034    .062    .017    .000    .000    .228
SERR:     .048    .071    .017    .031    .009    .000    .000
%RSD:      .49     .65    9.30    4.52  112.08     .00     .00

PUBL:   19.612  21.925    .389   1.333    n.a.  11.408  45.594 100.261
%VAR:      .53    -.17   -5.69    2.41     ---    -.09     .00
DIFF:     .105   -.038   -.022    .032     ---   -.010    .000
STDS:      138     140     145     139     285     ---     ---

STKF:    .3789   .3969   .4258   .1957   .1601     ---     ---
STCT:   125.64  132.04  141.39   64.55   53.31     ---     ---

UNKF:    .1930   .1843   .0031   .0077   .0001     ---     ---
UNCT:    63.99   61.31    1.04    2.53     .04     ---     ---
UNBG:     1.04    1.44    1.43     .47     .76     ---     ---

ZCOR:   1.0217  1.1875  1.1671  1.7819  1.1889     ---     ---
KRAW:    .5093   .4644   .0074   .0392   .0008     ---     ---
PKBG:    62.65   43.58    1.74    6.38    1.06     ---     ---

St  143 Set   1 Kutnahorite (Harvard #85670), Results Based on 1 Atoms of c

ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9    .518    .423    .007    .060    .001   1.000   3.003   5.012
    10    .521    .416    .008    .060    .001   1.000   3.003   5.008
    11    .515    .419    .006    .055    .000   1.000   3.003   4.999
    12    .519    .421    .007    .062    .001   1.000   3.003   5.013

AVER:     .518    .420    .007    .059    .001   1.000   3.003   5.008
SDEV:     .003    .003    .001    .003    .001    .000    .000    .007
SERR:     .001    .001    .000    .001    .000    .000    .000
%RSD:      .49     .65    9.30    4.52  112.08     .00     .00


I'll admit that 1.000 to 3.003 isn't *exactly* 3, but it's very much within the iteration tolerance. Yes, it is a 0.1% relative error but the carbon and oxygen concentrations are just there for the matrix correction and this level of error will have almost no effect on the matrix correction calculation.  I suspect the reason for this is just the matrix iteration which is adjusting the concentrations as the matrix iteration proceeds.

I'm not quite sure why you think there is a problem if you are calculating carbon relative to calculated oxygen, but here is the code I'm using to calculate things:

' Add in elements calculated relative to stoichiometric element (in0%)
For i% = 1 To zaf.in1%
If zaf.il%(i%) = 9 Then
zaf.krat!(i%) = (zaf.krat!(zaf.in0%) / zaf.atwts!(zaf.in0%)) * sample(1).StoichiometryRatio! * zaf.atwts!(i%)
zaf.krat!(zaf.in0%) = zaf.krat!(zaf.in0%) + zaf.krat!(i%) * zaf.p1!(i%)
zaf.ksum! = zaf.ksum! + zaf.krat!(i%) + zaf.krat!(i%) * zaf.p1!(i%)
End If
Next i%
End If

Where zaf.in0% is the stoichiometric oxygen channel and .p1 is calculated as seen here:

' Calculate oxide-elemental conversion factors
For i% = 1 To zaf.in1%
If zaf.atwts!(i%) = 0# Then GoTo ZAFSetZAFBadAtomicWeight
zaf.p1(i%) = p2!(i%) * AllAtomicWts!(8) / zaf.atwts!(i%)
Next i%


And .p2 is calculated as seen here:

p2!(i%) = 0#
If sample(1).OxideOrElemental% = 1 Or sample(1).numoxd%(i%) <> 0 Then
If sample(1).numcat%(i%) < 1 Then GoTo ZAFSetZAFNoCations
p2!(i%) = CSng(sample(1).numoxd%(i%)) / CSng(sample(1).numcat%(i%))
End If

I have a few hundred carbonate analyses acquired with PfE - except where the analytical total is exceedingly close to 100.00, the CO2 contents reported by PfE do not match stoichiometric values. PfE appears to systematically overestimate the proportion of CO2 for analyses that have low totals, and to underestimate in the case of high totals, in comparison to stoichiometric calculations. A graph of these data follows as a PDF attachment.

Ok, that is interesting.  So I took the above analyses and edited the raw intensities to force a low total on the first data point, but the carbon-oxygen ratio is still 1 to 3 or very close to that as seen here:

St  143 Set   1 Kutnahorite (Harvard #85670)
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 30.0  Beam Size =    2
(Magnification (analytical) =   4000),        Beam Mode = Analog  Spot
(Magnification (default) =     3200, Magnification (imaging) =    100)
Image Shift (X,Y):                                        -2.00,  3.00
Pre Acquire String :                                            PB OFF
Post Acquire String :                                            PB ON

Specimen from Harvard Mineralogical Museum (Carl Francis)
Locality: Franklin, NJ
See Garrels, et al., 1980 AJS 258, 402-418
Also J. V. Smith, Am. Jour. Sci. 1960
Number of Data Lines:   4             Number of 'Good' Data Lines:   4
First/Last Date-Time: 06/15/2008 10:27:04 AM to 06/15/2008 10:28:50 AM

Average Total Oxygen:         .000     Average Total Weight%:   97.017
Average Calculated Oxygen:    .000     Average Atomic Number:   13.729
Average Excess Oxygen:        .000     Average Atomic Weight:   20.759
Average ZAF Iteration:        3.00     Average Quant Iterate:     2.00

Element C is Calculated  .333 Atoms Relative To 1.0 Atom of O

St  143 Set   1 Kutnahorite (Harvard #85670), Results in Elemental Weight Percents
 
ELEM:       Ca      Mn      Fe      Mg       P       C       O
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    RELA    SPEC
BGDS:      LIN     LIN     LIN     LIN     LIN
TIME:    10.00   10.00   10.00   10.00   10.00     ---     ---
BEAM:    30.00   30.00   30.00   30.00   30.00     ---     ---

ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9   6.442  21.973    .382   1.404    .021  11.398  45.594  87.213
    10  19.825  21.700    .401   1.376    .016  11.398  45.594 100.310
    11  19.592  21.858    .321   1.278   -.008  11.398  45.594 100.032
    12  19.742  21.963    .363   1.422    .032  11.398  45.594 100.514

AVER:   16.400  21.873    .367   1.370    .015  11.398  45.594  97.017
SDEV:    6.640    .127    .034    .064    .017    .000    .000   6.539
SERR:    3.320    .063    .017    .032    .009    .000    .000
%RSD:    40.49     .58    9.30    4.71  111.79     .00     .00

PUBL:   19.612  21.925    .389   1.333    n.a.  11.408  45.594 100.261
%VAR:   -16.38    -.23   -5.69    2.77     ---    -.09     .00
DIFF:   -3.212   -.052   -.022    .037     ---   -.010    .000
STDS:      138     140     145     139     285     ---     ---

STKF:    .3789   .3969   .4258   .1957   .1601     ---     ---
STCT:   125.64  132.04  141.39   64.55   53.31     ---     ---

UNKF:    .1605   .1843   .0031   .0077   .0001     ---     ---
UNCT:    53.23   61.31    1.04    2.53     .04     ---     ---
UNBG:     1.04    1.44    1.43     .47     .76     ---     ---

ZCOR:   1.0213  1.1867  1.1670  1.7881  1.1926     ---     ---
KRAW:    .4237   .4644   .0074   .0392   .0008     ---     ---
PKBG:    52.46   43.58    1.74    6.38    1.06     ---     ---

St  143 Set   1 Kutnahorite (Harvard #85670), Results Based on 1 Atoms of c

ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9    .169    .421    .007    .061    .001   1.000   3.003   4.663
    10    .521    .416    .008    .060    .001   1.000   3.003   5.008
    11    .515    .419    .006    .055    .000   1.000   3.003   4.999
    12    .519    .421    .007    .062    .001   1.000   3.003   5.013

AVER:     .431    .420    .007    .059    .001   1.000   3.003   4.921
SDEV:     .175    .002    .001    .003    .001    .000    .000    .172
SERR:     .087    .001    .000    .001    .000    .000    .000
%RSD:    40.49     .58    9.30    4.71  111.79     .00     .00


I attached the data file I used to get these results below.

What am I missing?
john
« Last Edit: June 29, 2015, 04:14:15 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

AndrewLocock

  • Professor
  • ****
  • Posts: 104
    • University of Alberta Electron Microprobe Laboratory
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #19 on: June 25, 2015, 12:51:57 PM »
Hi John,
I had a quick look at the new data in your post.

Why are the elemental weight percents of carbon and oxygen identical for all four analyses?

In the case of a low total, for which the stoichiometric formula MCO3 is maintained, the C and oxygen values should be similarly low.
It puzzles me that the C and O wt% for the low analysis have the same mass fractions as for the other analyses.

Quote
ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9   6.442  21.973    .382   1.404    .021  11.398  45.594  87.213

By my calculation (again ignoring phosphorus), for the following mass fractions:
Ca       Mn       Fe       Mg
6.442  21.973  0.382  1.404

the mass fractions of C and O for the formula MCO3 should be:
wt% C   wt% O   new sum
7.51     30.01     67.72

This will yield the formula Ca 0.257; Mn 0.640; Fe 0.011; Mg 0.092; C 1.000; O 3.000; Sum 5.000; which is charge balanced.

In contrast, the formula listed for this low analysis has a charge imbalance of about -0.67 pfu:
Quote
143 Set   1 Kutnahorite (Harvard #85670), Results Based on 1 Atoms of c

ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9    .169    .421    .007    .061    .001   1.000   3.003   4.663

I have attached the Excel file of analyses to which my previous post referred. This includes all 267 analytical points, rather than just the best 226 shown in the graph attached to the previous post.

Thanks for looking into this - I am certainly missing something.

Cheers,
Andrew

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #20 on: June 25, 2015, 01:52:03 PM »
Why are the elemental weight percents of carbon and oxygen identical for all four analyses?

Ooops!  It's because I forgot to specify that the program calculate oxygen by stoichiometry for this kutnahorite sample!  The default method for specifying unanalyzed elements for standards is to just load the missing specified elements from the standard database!

Ok, so if I now properly specify calculate oxygen by stoichiometry (as opposed to just loading it from the standard database) I now get this result:

St  143 Set   1 Kutnahorite (Harvard #85670)
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 30.0  Beam Size =    2

Specimen from Harvard Mineralogical Museum (Carl Francis)
Locality: Franklin, NJ
See Garrels, et al., 1980 AJS 258, 402-418
Also J. V. Smith, Am. Jour. Sci. 1960
Number of Data Lines:   4             Number of 'Good' Data Lines:   4
First/Last Date-Time: 06/15/2008 10:27:04 AM to 06/15/2008 10:28:50 AM

Average Total Oxygen:       45.503     Average Total Weight%:  100.200
Average Calculated Oxygen:  45.506     Average Atomic Number:   13.969
Average Excess Oxygen:       -.003     Average Atomic Weight:   21.128
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction
Element C is Calculated  .333 Atoms Relative To 1.0 Atom of Oxygen

St  143 Set   1 Kutnahorite (Harvard #85670), Results in Elemental Weight Percents
 
ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9  19.706  22.024    .382   1.385    .021  11.335  45.527 100.381
    10  19.823  21.698    .401   1.377    .016  11.356  45.527 100.198
    11  19.588  21.855    .321   1.278   -.008  11.368  45.391  99.793
    12  19.740  21.961    .363   1.423    .032  11.341  45.569 100.428

AVER:   19.714  21.884    .367   1.365    .015  11.350  45.503 100.200
SDEV:     .097    .143    .034    .062    .017    .015    .077    .289
SERR:     .049    .071    .017    .031    .009    .007    .039
%RSD:      .49     .65    9.30    4.53  112.08     .13     .17

PUBL:   19.612  21.925    .389   1.333    n.a.  11.408  45.594 100.261
%VAR:      .52    -.18   -5.70    2.43     ---    -.51    -.20
DIFF:     .102   -.041   -.022    .032     ---   -.058   -.091
STDS:      138     140     145     139     285     ---     ---

STKF:    .3789   .3969   .4258   .1957   .1601     ---     ---
STCT:   125.64  132.04  141.39   64.55   53.31     ---     ---

UNKF:    .1930   .1843   .0031   .0077   .0001     ---     ---
UNCT:    63.99   61.31    1.04    2.53     .04     ---     ---
UNBG:     1.04    1.44    1.43     .47     .76     ---     ---

ZCOR:   1.0216  1.1873  1.1669  1.7822  1.1889     ---     ---
KRAW:    .5093   .4644   .0074   .0392   .0008     ---     ---
PKBG:    62.65   43.58    1.74    6.38    1.06     ---     ---

St  143 Set   1 Kutnahorite (Harvard #85670), Results Based on 1 Atoms of c

ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9    .521    .425    .007    .060    .001   1.000   3.015   5.029
    10    .523    .418    .008    .060    .001   1.000   3.010   5.018
    11    .516    .420    .006    .056    .000   1.000   2.997   4.995
    12    .522    .423    .007    .062    .001   1.000   3.016   5.031

AVER:     .521    .422    .007    .059    .001   1.000   3.010   5.019
SDEV:     .003    .003    .001    .003    .001    .000    .009    .016
SERR:     .001    .002    .000    .001    .000    .000    .004
%RSD:      .56     .75    9.36    4.64  112.00     .00     .29


Ok, now let's try forcing a bad total on the first line again as seen here:

St  143 Set   1 Kutnahorite (Harvard #85670)
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 30.0  Beam Size =    2

Specimen from Harvard Mineralogical Museum (Carl Francis)
Locality: Franklin, NJ
See Garrels, et al., 1980 AJS 258, 402-418
Also J. V. Smith, Am. Jour. Sci. 1960
Number of Data Lines:   4             Number of 'Good' Data Lines:   4
First/Last Date-Time: 06/15/2008 10:27:04 AM to 06/15/2008 10:28:50 AM

Average Total Oxygen:       45.029     Average Total Weight%:   96.717
Average Calculated Oxygen:  45.032     Average Atomic Number:   13.740
Average Excess Oxygen:       -.003     Average Atomic Weight:   20.750
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction
Element C is Calculated  .333 Atoms Relative To 1.0 Atom of Oxygen

St  143 Set   1 Kutnahorite (Harvard #85670), Results in Elemental Weight Percents
 
ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9   6.438  21.969    .382   1.399    .021  12.613  43.628  86.451
    10  19.823  21.698    .401   1.377    .016  11.356  45.527 100.198
    11  19.588  21.855    .321   1.278   -.008  11.368  45.391  99.793
    12  19.740  21.961    .363   1.423    .032  11.341  45.569 100.428

AVER:   16.397  21.871    .367   1.369    .015  11.670  45.029  96.717
SDEV:    6.640    .127    .034    .064    .017    .629    .937   6.849
SERR:    3.320    .063    .017    .032    .009    .315    .468
%RSD:    40.50     .58    9.30    4.65  111.82    5.39    2.08

PUBL:   19.612  21.925    .389   1.333    n.a.  11.408  45.594 100.261
%VAR:   -16.39    -.25   -5.70    2.70     ---    2.29   -1.24
DIFF:   -3.215   -.054   -.022    .036     ---    .262   -.565
STDS:      138     140     145     139     285     ---     ---

STKF:    .3789   .3969   .4258   .1957   .1601     ---     ---
STCT:   125.64  132.04  141.39   64.55   53.31     ---     ---

UNKF:    .1605   .1843   .0031   .0077   .0001     ---     ---
UNCT:    53.23   61.31    1.04    2.53     .04     ---     ---
UNBG:     1.04    1.44    1.43     .47     .76     ---     ---

ZCOR:   1.0211  1.1866  1.1669  1.7868  1.1922     ---     ---
KRAW:    .4237   .4644   .0074   .0392   .0008     ---     ---
PKBG:    52.46   43.58    1.74    6.38    1.06     ---     ---

St  143 Set   1 Kutnahorite (Harvard #85670), Results Based on 1 Atoms of c

ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9    .153    .381    .007    .055    .001   1.000   2.597   4.192
    10    .523    .418    .008    .060    .001   1.000   3.010   5.018
    11    .516    .420    .006    .056    .000   1.000   2.997   4.995
    12    .522    .423    .007    .062    .001   1.000   3.016   5.031

AVER:     .429    .411    .007    .058    .001   1.000   2.905   4.809
SDEV:     .184    .020    .001    .003    .001    .000    .206    .412
SERR:     .092    .010    .000    .002    .000    .000    .103
%RSD:    42.88    4.86    9.50    5.94  114.34     .00    7.08


Now that makes more sense, the total (and calculated oxygen) is low because of the missing Ca.  Remember, this calculation for matrix effects of unanalyzed elements is *not* an attempt to perform a charge balance of anything- it is just based on the measured concentrations.  If the measured concentrations are "off", the calculation of elements by stoichiometry will also be "off".

Does this help?
john
« Last Edit: June 25, 2015, 02:13:53 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

AndrewLocock

  • Professor
  • ****
  • Posts: 104
    • University of Alberta Electron Microprobe Laboratory
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #21 on: June 25, 2015, 03:01:22 PM »
I would have thought that in the case of a bad (low) total, the oxygen calculated by stoichiometric proportion to the divalent cations would be low.
The carbon, calculated by proportion to that oxygen, should therefore also be low, not high, as in your example.

Quote
St  143 Set   1 Kutnahorite (Harvard #85670), Results in Elemental Weight Percents
 
ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9   6.438  21.969    .382   1.399    .021  12.613  43.628  86.451
    10  19.823  21.698    .401   1.377    .016  11.356  45.527 100.198
    11  19.588  21.855    .321   1.278   -.008  11.368  45.391  99.793
    12  19.740  21.961    .363   1.423    .032  11.341  45.569 100.428

I do agree that including some proportion of C in the correction procedure should improve the results.
However, at present, PfE is generating totals based on CO2 contents that are not in actual exact stoichiometric proportion to the divalent cations.
These analytical totals can therefore be misleading as they are, in fact, erroneous.

As the actual total deviates from 100.00 wt%, PfE is either overestimating C (for low totals), or underestimating C (for high totals).
Such deviations could therefore mask the true character of the analysis.

In the case of carbonates, the user must recalculate the correct stoichiometric CO2 contents based on the divalent metal cations.
I cannot see publishing analyses where C and O were not measured but rather determined by stoichiometric constraints, but that still do not charge balance....

Why does the C content deviate from stoichiometry as a function of total?

Thanks,
Andrew


John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #22 on: June 25, 2015, 03:31:48 PM »
I would have thought that in the case of a bad (low) total, the oxygen calculated by stoichiometric proportion to the divalent cations would be low.
The carbon, calculated by proportion to that oxygen, should therefore also be low, not high, as in your example.

Quote
St  143 Set   1 Kutnahorite (Harvard #85670), Results in Elemental Weight Percents
 
ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM 
     9   6.438  21.969    .382   1.399    .021  12.613  43.628  86.451
    10  19.823  21.698    .401   1.377    .016  11.356  45.527 100.198
    11  19.588  21.855    .321   1.278   -.008  11.368  45.391  99.793
    12  19.740  21.961    .363   1.423    .032  11.341  45.569 100.428

Hi Andrew,
The carbon is not based on the total, it is based on the calculated oxygen which in turn (with this particular calculation option) is based on the cation concentrations.

And in the line above with a bad total, the calculated oxygen concentration *is* low as expected, because some Ca intensity is missing (I edited it to a lower intensity!).

But because the relative ratio of carbon to oxygen is based on the atomic stochiometry, not the concentration stoichiometry, the relative carbon to oxygen has to be different for concentrations compared to atoms.

As seen here, in the formula atoms, the number of oxygen atoms *is* low compared to the carbon as we would expect:

St  143 Set   1 Kutnahorite (Harvard #85670), Results Based on 1 Atoms of c

ELEM:       Ca      Mn      Fe      Mg       P       C       O   SUM
     9    .153    .381    .007    .055    .001   1.000   2.597   4.192
    10    .523    .418    .008    .060    .001   1.000   3.010   5.018
    11    .516    .420    .006    .056    .000   1.000   2.997   4.995
    12    .522    .423    .007    .062    .001   1.000   3.016   5.031

AVER:     .429    .411    .007    .058    .001   1.000   2.905   4.809
SDEV:     .184    .020    .001    .003    .001    .000    .206    .412
SERR:     .092    .010    .000    .002    .000    .000    .103
%RSD:    42.88    4.86    9.50    5.94  114.34     .00    7.08


This all makes sense to me.

In the case of carbonates, the user must recalculate the correct stoichiometric CO2 contents based on the divalent metal cations.

I cannot see publishing analyses where C and O were not measured but rather determined by stoichiometric constraints, but that still do not charge balance....

Why does the C content deviate from stoichiometry as a function of total?

Again, the C content deviates from stoichiometry *not* as a function of the total but as a function of the total cations.

When the formula proportions are calculated from the concentrations, everything is normalized to the sum of the atoms as it should be. You cannot get charge balance if the analysis is wrong!

It seems you are asking for an exact C to O of 1 to 3, but that is impossible if the carbon is based on the calculated oxygen and the calculated oxygen is wrong because the analysis is bad. 

I'm not a geologist so maybe there's some mineralogical thing you are concerned about, but one can't expect the right stoichiometries if the concentrations are wrong, correct?

Maybe you should just do the formula by difference option and specify CO3 as your formula...?
john
« Last Edit: June 25, 2015, 03:34:04 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

JohnF

  • Professor
  • ****
  • Posts: 105
  • CQ DX DE WA3BTA
    • John's EPMA
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #23 on: June 25, 2015, 04:30:25 PM »
I just got back from travel and  don’t have time and energy now to read the whole thread. But I do have a comment which perhaps doesn't deal with the exact question, but for me, PfE does carbonates as good as can be done by EPMA.

I have never had a problem with the way PfE does carbonates, BECAUSE a correct analysis is self consistent if and only if
(0) All the existent cations are measured,
(1) the analytical total after all the smoke and mirrors is 99.5 - 100.5 (which it is almost always when things done properly)
AND
(2) The cations sum to 1 (.995-1.005), the Carbon is very close if not dead on 1 and the Oxygen is 3 or very close.

In lieu of doing x-ray diffraction to prove it truly is a carbonate, this seems to me to be as close as one can get to an EPMA analysis of a carbonate mineral without measuring O and C (and I’ve tried it, and it aint easy, and you do not get good numbers).

AndrewLocock

  • Professor
  • ****
  • Posts: 104
    • University of Alberta Electron Microprobe Laboratory
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #24 on: June 25, 2015, 04:43:01 PM »
Hi John,
I don't mean to be obtuse, but the essence of your argument is not clear to me.

Whether or not an analysis has a good total is independent of the nature of the formula wherein a large portion is calculated by stoichiometry, and not measured.

For ideal calcite, Ca = 40.04 wt%, and the C and O calculated by stoichiometry (for the formula CaCO3) are necessarily: C = 12.00 wt%, O = 47.96 wt%, and sum = 100.00 wt%. The formula is CaCO3.

For a "bad analysis" of calcite, where Ca = 38.41 wt%, the stoichiometric ratio 1 Ca = 1 C = 3 O yields: C = 11.51 wt%, O = 46.00 wt%, and sum 95.92 wt%. The formula is still(!) CaCO3 - after all, Ca  is the only thing that we have measured.

If oxygen is calculated by stoichiometry to Ca, and C is calculated by stoichiometry to oxygen, how could it be otherwise?

In PfE, in the "Calculation Options" window, the 2 checked options that I am using are: "Calculate with Stoichiometric Oxygen", and "Stoichiometry To Calculated Oxygen: 0.333 Atoms Of C To 1 Oxygen" (as per screen capture in the attached Word document).

I don't understand the distinction that you make:
Quote
But because the relative ratio of carbon to oxygen is based on the atomic stochiometry, not the concentration stoichiometry, the relative carbon to oxygen has to be different for concentrations compared to atoms.

The C to O atomic ratio is fixed: 0.333 C to 1 O. The O to Ca ratio is also fixed: 1 to 1.

I appreciate your assistance in helping with my (mis)understanding of what PfE is doing.

Thanks,
Andrew




John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #25 on: June 25, 2015, 05:09:02 PM »
I appreciate your assistance in helping with my (mis)understanding of what PfE is doing.

Hi Andrew,
I'm sorry. Likewise I don't understand your point. 

It seems clear to me that if total is low due to a missing cation, the normalization to the total atoms will not maintain the 1:3 ratio of carbon to oxygen, because concentrations are not atoms. It will only be perfect if the analysis is perfect.

I'd be happy to continue the conversation, but maybe you should just use the formula by difference option and specify CO3 by difference. I promise you will get the 1 to 3 carbon to oxygen ratio you seem to require.

I think part of the confusion is that I'm calculating these elements by stoichiometry in weight percent and then normalizing these concentrations to formula atoms...

I have some mineralogical calculations for amphiboles and biotite, but not for other minerals, sorry to say.  But if you could write some charge balancing code for carbonates, I'd be pleased to incorporate that into PFE.
john
« Last Edit: June 25, 2015, 05:56:03 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

Julien

  • Professor
  • ****
  • Posts: 83
  • The truth is out there...
    • Geoloweb - J. Allaz personal website
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #26 on: June 26, 2015, 07:18:58 AM »
Hi Andrew & co,

I *might* agree that this can be confusing. Let's take back the example of good and bad analysis you give (I converted the Ca content in CaO):

Wt-% (O norm.), CaO, CO2, Total
Analysis 1, 56.0238, 43.9673, 99.9911
Analysis 2, 53.7431, 42.1774, 95.9205

Norm., Ca, C, Total cation, O
Analysis 1, 1.00000, 1.00000, 2.00000, 3.00000
Analysis 2, 1.00000, 1.00000, 2.00000, 3.00000

Effectively in both case you still have 1 C for 3 O. With this "simple" case of one cation, you will ALWAYS get 1 cation of Ca, 1 of C and one of O. This is because of the normalization process, which specify (in normal situation) a fixed amount of oxygen per cation to balance the charge. Now, if we consider carbonate, we can assume it must have one oxygen atom for each atom of calcium, and add to this one molecule of CO2, but the more logical way to see this problem is NOT to consider just C, or just CO2, but effectively CO3. Of course, at the end, the recalculation effectively reports results as elemental C wt-% or CO2 wt-%. Key is that, through the mineral formula recalculation, the “game” is always to balance the positive charges (= what is measured) with anions that are NOT measured. In most case, we simply compensate all positive charges with O2-, and the amount of O is defined by the fixed oxidation state for each cation. In the case of carbonate, the negative charge is effectively (CO3)2-, which makes even more sense when we look at the crystalline structure of carbonate; they are effectively made of CO3 triangles and not isolate CO2 molecule ;). Hence a ratio of 1/3 carbon for 1 oxygen (or 1 C for 3 O). Of course, one could state that we have one CO2 and one atom of O, but to me it makes more sense to simply consider CO3 “as a single anionic molecule”.

The problem of hydrogen is the same! Hydrogen is a cation (that we cannot measure by EMP), but you balance the charges with anion of (OH)-, and you do not consider simply H+, or H2O; again the crystalline structure show H as being OH anion group, not H2O molecule or isolate H cation… For hydrous mineral, you can consider the total positive charges and the total oxygen WITH oxygen from hydroxide group, but you need to “correct” the total amount of oxygen used to balanced the measured cation (i.e., all cations WITHOUT hydrogen). For instance:

Epidote = (Ca2)(Al2Fe3+)(Si2O7)(SiO4)O(OH)

=> 13 oxygens TOTAL = 26 negative charges

……BUT…… There is ONE hydrogen atom (1 positive charge) that is calculated by stoichiometry and charge balance (or by difference - wrong idea here!).

=> actually there are 12.5 oxygen (a number often refer as being ideal for epidote normalization - without taking into account of Fe2+/Fe3+ issue), as the “half-oxygen” is used to balance the charge of the calculated 1 hydrogen atom. However, to my opinion this is wrong to state this, and we should rather consider 13 oxygens INCLUDING one O associated to one H (and correct for this through the normalization process).

BTW, take a look at my website, I have implemented a form to calculate mineral formula, and it does do the trick (well, kind of a black box for user without access to my code) to calculate any H2O or CO2 content based on user input. To make it more “geologically meaningful”, I speak about H2O or CO2 groups, but the calculation does include what I describe above...

http://cub.geoloweb.ch/index.php?page=mineral_formula

Just my $0.02, but I believe, John, you are doing things 200% correctly, although I can understand Karsten's comment about the "user-friendliness" of the input. Maybe I can work with you to implement a solution similar to what I have on my website.

Julien

Edit by John: I'd be pleased to implement any mineral recalculation code in PFE that anyone makes available... it's good to have geologist friends!
« Last Edit: June 26, 2015, 09:04:36 AM by John Donovan »

Karsten Goemann

  • Global Moderator
  • Professor
  • *****
  • Posts: 227
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #27 on: June 27, 2015, 07:49:10 PM »
All,

I think the point Andrew is trying to make is that, no matter what the the actual cation concentrations are (e.g. in case of a bad measurement or even just some minor variations due to counting statistics), he would expect the ratios always to be 1 total cations : 1 carbon : 3 oxygen ratio, no matter what the actual analytical total is, as C and O are calculated from the cations by stoichiometry. (C indirectly via O.)

If you have a look at the Excel spreadsheet with the data Andrew posted, there are some measurements with somewhat low cation totals which start to deviate from this assumption, but at the most extreme he's got some analyses in there which basically show zero cations (< 1wt% cation totals), probably just resin measurements, but have calculated carbon of 18 wt% and O of 48 wt%. Independent of those obviously being bad measurements which can't be used, what is the exact reason why C and O are so much higher than what would be their values calculated by stoichiometry?

I admit I don't know too much about the inner mathematical workings of matrix corrections myself, but I assume that the low cation totals make the carbon and oxygen concentrations "go wild" in the iteration (e.g. because of reduced absorption) towards much higher values than what would be stoichiometric. I assume there is a good reason why C and O can't be "pinned" to the cation values within the matrix correction?

Cheers,
Karsten

Probeman

  • Emeritus
  • *****
  • Posts: 2836
  • Never sleeps...
    • John Donovan
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #28 on: June 27, 2015, 07:54:50 PM »
I think the point Andrew is trying to make is that, no matter what the the actual cation concentrations are (e.g. in case of a bad measurement or even just some minor variations due to counting statistics), he would expect the ratios always to be 1 total cations : 1 carbon : 3 oxygen ratio, no matter what the actual analytical total is, as C and O are calculated from the cations by stoichiometry. (C indirectly via O.)

If you have a look at the Excel spreadsheet with the data Andrew posted, there are some measurements with somewhat low cation totals which start to deviate from this assumption, but at the most extreme he's got some analyses in there which basically show zero cations (< 1wt% cation totals), probably just resin measurements, but have calculated carbon of 18 wt% and O of 48 wt%. Independent of those obviously being bad measurements which can't be used, what is the exact reason why C and O are so much higher than what would be their values calculated by stoichiometry?

I admit I don't know too much about the inner mathematical workings of matrix corrections myself, but I assume that the low cation totals make the carbon and oxygen concentrations "go wild" in the iteration (e.g. because of reduced absorption) towards much higher values than what would be stoichiometric. I assume there is a good reason why C and O can't be "pinned" to the cation values within the matrix correction?

Hi Karsten,
I have to admit I pretty confused about all this too. But the relative C:O ratio can be "pinned" if the formula (CO3) difference option is specified. 

As I said previously, if the amount of carbon is dependent on the amount of calculated oxygen and the calculated oxygen is wrong because the total/analysis is bad, etc, then that C:O ratio will be wrong...  it just depends on the calculation option selected.
john
The only stupid question is the one not asked!

Julien

  • Professor
  • ****
  • Posts: 83
  • The truth is out there...
    • Geoloweb - J. Allaz personal website
Re: Specifying Unanalyzed Elements For a Proper Matrix Correction
« Reply #29 on: June 27, 2015, 10:09:29 PM »
This thread becomes really interesting. And thanks to Karsten, I think to now understand the problem, but I don't have the solution. I maintain that the idea of a 1:3 ratio C to O is required. And effectively, probably all of us do agree with that. Normally, with this assumption, you should get the right CO2 wt-% value with this, AND you should effectively get the amount of C (atoms) equal to the amount of 2+ cation (atoms).

It is *possible* there is an error in Probe for EPMA (John?). I realized this by re-doing all the calculations both by hand and through my website. The complete XL sheet is attached to this thread. Let me know if you find an error in my logic (the spreadsheet contain all the formula employed)...

Let's start with the output from Probe for EPMA mentioned by Andrew:

   Ca      Mn      Fe      Mg      C      O      SUM
#21   19.734   22.026   0.382   1.385   11.333   45.532   100.392
#22   19.85   21.699   0.401   1.377   11.354   45.532   100.213
#23   19.615   21.856   0.321   1.278   11.366   45.396   99.832
#24   19.767   21.962   0.363   1.423   11.338   45.574   100.427

I recalculated this in oxide, as I personally prefer to deal with oxide when it comes to oxide / carbonate:

   CaO      MnO      FeO      MgO      CO2
#21   27.612   28.440   0.491   2.297   41.525
#22   27.774   28.018   0.516   2.283   41.602
#23   27.445   28.221   0.413   2.119   41.646
#24   27.658   28.358   0.467   2.360   41.543

Now... Here is the output that Andrew mention regarding atom per formula unit:

   Fe2+      Mg      Mn      Ca      C      Total cation      O
#21   0.0072   0.0601   0.4229   0.5194   0.9952   2.0048   3.0000
#22   0.0076   0.0597   0.4165   0.5223   0.9969   2.0031   3.0000
#23   0.0061   0.0556   0.4205   0.5173   1.0003   1.9997   3.0000
#24   0.0069   0.0617   0.4214   0.5199   0.9951   2.0049   3.0000

(I did recalculated this through my online tool for mineral formula recalculation forcing a total of 3 oxygens). This is similar to the results from Probe for EPMA. Notice that effectively, the total number of 2+ cation do NOT match the total number of C!!! I believe this is because somehow the wt-% C calculated by Probe for EPMA is slightly wrong (well, hypothesis)!

Here is now the results of oxide wt-% recalculated based on the assumption that the sum of 2+ cations is equal to the number of atom of carbon - or, since we are dealing only with 2+ cation, we can rather state that the sum of the cations is balanced by an equal amount of (CO3)2- molecule.

   FeO      MgO      MnO      CaO      CO2      Total
#21   0.4910   2.2970   28.4400   27.6120   42.1227   100.9627
#22   0.5160   2.2830   28.0180   27.7740   41.9881   100.5791
#23   0.4130   2.1190   28.2210   27.4450   41.6137   99.8117
#24   0.4670   2.3600   28.3580   27.6580   42.1621   101.0051

Notice the CO2 is now higher, between 41.61 and 42.16% (versus 41.52 and 41.65% from PfE). What I do NOT understand, is that this difference is not consistent! For instance, analysis #24 yield the highest CO2 content through my calculation, whereas analysis #23 yield the highest content with Probe for EPMA. Once the difference in calculated CO2 wt-% is +0.032% (analysis #23), sometime it is strongly negative (PfE underestimate CO2 content by -0.39% [analysis #22] to -0.62% [analysis #24]).

And as a check, here is now the NEW mineral formula recalculation based on this new CO2 wt-% recalculation. Notice that now both the total of 2+ cations do match the number of C-atom:

   Fe2+      Mg      Mn      Ca      C      O         Sum M
#21   0.014   0.119   0.838   1.029   2.000   6.000      2.000
#22   0.015   0.119   0.828   1.038   2.000   6.000      2.000
#23   0.012   0.111   0.841   1.035   2.000   6.000      2.000
#24   0.014   0.122   0.835   1.030   2.000   6.000      2.000

Question to John: HOW do you recalculate the CO2 in weight-%? I guess, you run the C (or CO2) wt-% content through the matrix correction, right? But you also need to perform a conversion in atomic proportion to recalculate the C (or CO2) content, right? Maybe posting (or sending to me by email) your VB code might help me understanding where the error could be... Otherwise, you can also look at my spreadsheet to assess how this should be done?

Julien
« Last Edit: June 27, 2015, 10:21:47 PM by Julien »