Author Topic: Improving Time Dependent Intensity (TDI) Corrections  (Read 13283 times)

Probeman

  • Emeritus
  • *****
  • Posts: 2836
  • Never sleeps...
    • John Donovan
Improving Time Dependent Intensity (TDI) Corrections
« on: November 18, 2013, 12:44:24 PM »
I'm opening this topic with the intent to create a place to discuss improving the Time Dependent Intensity (TDI) correction in Probe for EPMA for beam sensitive sample acquisition. If you want to ask questions or comment on the existing TDI correction please use this topic link here:

http://probesoftware.com/smf/index.php?topic=11.0

The reason for this is that although the TDI correction is PFE works well well for almost all beam sensitive samples (both "volatile" and "grow-in" artifacts as documented by many investigators, such as Stuart Kearns, http://www.geology.wisc.edu/~johnf/g777/AmMin/Humphreys_2006.pdf, and George Morgan, http://www.geology.wisc.edu/~johnf/g777/AmMin/MorganLondon2005.pdf), there are still some situations requiring an even more robust TDI correction due to the limited size of the sample (requiring a more focused beam), or element sensitivity (requiring a higher beam current).

And let's be honest, if we could run these samples at cryogenic temperatures as suggested by Stuart Kearns we could use our existing TDI methods just fine, but almost no one (not even Stuart anymore!), has an EPMA instrument with a cryogenic stage, (Electronprobe Microanalysis of Volcanic Glass at Cryogenic Temperatures (2002) S.L. Kearns,N. Steen and E. Erlund, Microscopy and Microanalysis 8 (Supple 2), 1562-1563CD), so we need a robust software solution that works even under less than ideal conditions.

Please feel free to chime in with your questions, observations and comments. This topic is for all researchers working with beam sensitive materials in EPMA.
« Last Edit: February 18, 2014, 09:17:13 AM by John Donovan »
The only stupid question is the one not asked!

Probeman

  • Emeritus
  • *****
  • Posts: 2836
  • Never sleeps...
    • John Donovan
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #1 on: November 18, 2013, 02:01:49 PM »
Ok, let's start by reviewing what we can do with the Time Dependent Intensity (TDI) correction in Probe for EPMA, which I believe is the best method currently available. By the way, to give credit where credit is due, Paul Carpenter suggested we use the term Time Dependent Intensity, rightly I would say, because then we are not assuming physics we don't fully understand (sample heating, sub-surface charging, ion migration, changes in the matrix absorption due to ion migration, etc.).

Here we see a large but otherwise typical TDI correction (note most of the examples we will discuss will be from Na intensities, but the PFE TDI correction applies equally well to all elements that undergo changes in intensity as a function of beam exposure, e.g., K, Si, Al, F, P, etc.):



The above example has a Na TDI correction percent of almost 80%. Not too bad for losing almost half one's Na intensity as seen here:

Un   17 Withers-N5, Results in Elemental Weight Percents
 
ELEM:       Na       K      Cl      Ba       F      Ti      Fe      Mn      Ca      Si      Al      Mg       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    SPEC
BGDS:      MAN     LIN     LIN     LIN     LIN     LOW     MAN     LIN     MAN     MAN     MAN     MAN     EXP
TIME:    60.00   20.00   10.00   20.00   40.00   10.00   40.00   10.00   20.00   20.00   20.00   60.00  120.00
BEAM:     9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98    9.98

ELEM:       Na       K      Cl      Ba       F      Ti      Fe      Mn      Ca      Si      Al      Mg       O       H   SUM 
   574   2.780   3.536    .205    .030    .086    .108   3.136    .060    .162  32.680   5.404    .012  50.078    .665  98.943
   575   3.072   3.557    .207    .017    .084    .124   3.120    .079    .148  32.990   5.365    .007  49.939    .594  99.303
   576   2.846   3.314    .180    .032    .100    .137   3.131    .083    .129  32.914   5.316    .000  49.919    .624  98.727
   577   2.925   3.550    .258    .041    .111    .098   3.165    .058    .118  32.858   5.437   -.001  49.985    .621  99.224
   578   3.011   3.502    .258   -.014    .083    .072   3.173    .081    .116  32.715   5.364    .009  49.812    .626  98.810
   579   3.043   3.561    .239   -.079    .070    .124   3.191    .083    .130  32.812   5.428    .006  50.012    .623  99.244
   580   2.842   3.531    .223    .016    .089    .101   3.125    .055    .132  32.799   5.335   -.001  49.969    .644  98.859
   581   3.179   3.459    .248   -.019    .121    .118   3.100    .050    .152  33.024   5.362    .006  50.053    .605  99.455
   582   2.924   3.505    .164   -.025    .080    .134   3.197    .051    .120  33.124   5.375    .009  49.790    .562  99.009
   583   2.890   3.436    .218   -.062    .033    .147   3.165    .031    .143  32.919   5.388    .003  49.908    .609  98.830
   584   2.952   3.381    .213    .004    .033    .124   3.124    .064    .133  33.068   5.325    .004  49.852    .588  98.865
   585   2.699   3.608    .191    .029    .071    .121   3.150    .061    .161  33.000   5.380    .006  50.223    .641  99.341

AVER:    2.930   3.495    .217   -.003    .080    .117   3.148    .063    .137  32.909   5.373    .005  49.962    .617  99.051
SDEV:     .133    .084    .030    .038    .026    .020    .030    .016    .016    .139    .038    .004    .122    .028    .248
SERR:     .038    .024    .009    .011    .008    .006    .009    .005    .005    .040    .011    .001    .035    .008
%RSD:     4.54    2.40   13.87-1523.47   33.10   17.21     .97   25.48   11.67     .42     .70   80.01     .24    4.47
STDS:      336     374     285     835     835      22     395      25     358     162     336      12      12       0

STKF:    .0735   .1132   .0601   .7430   .1715   .5546   .6779   .7341   .1693   .2018   .1331   .4737   .2328   .0000
STCT:   2447.9  2423.7   839.3  8520.6  2398.7  6097.6 14136.8 13590.2  2247.6 34290.6 23223.7 24410.3  8335.9      .0

UNKF:    .0154   .0303   .0017   .0000   .0002   .0010   .0261   .0005   .0012   .2688   .0412   .0000   .2315   .0000
UNCT:    513.0   648.1    24.2     -.2     2.7    10.8   545.2     9.5    16.2 45673.8  7190.2     1.7  8290.2      .0
UNBG:      9.9    12.6     5.0    29.0     3.8     5.8    23.4    16.1     4.4   134.1   103.2    15.2    53.7      .0

ZCOR:   1.9017  1.1548  1.2500  1.3725  4.0763  1.1972  1.2041  1.2234  1.1196  1.2241  1.3036  1.4987  2.1582   .0000
KRAW:    .2096   .2674   .0289   .0000   .0011   .0018   .0386   .0007   .0072  1.3320   .3096   .0001   .9945   .0000
PKBG:    52.69   52.56    6.39    1.00    1.77    3.03   24.32    1.61    4.71  341.58   70.64    1.11  156.16     .00
INT%:     ----    ----    ----   -3.81    ----    -.02    ----    ----    ----    ----    ----    ----    ----    ----
APF:      ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----   1.031    ----

TDI%:   79.930    .454    ----    ----    ----    ----    ----    ----    ----   -.870    ----    ----  -3.030    ----
DEV%:      2.7     2.4    ----    ----    ----    ----    ----    ----    ----      .3    ----    ----      .3    ----
TDIF:   QUADRA  LINEAR    ----    ----    ----    ----    ----    ----    ----  LINEAR    ----    ----  LINEAR    ----
TDIT:    72.58   30.67    ----    ----    ----    ----    ----    ----    ----   31.00    ----    ----  129.42    ----
TDII:     522.    660.    ----    ----    ----    ----    ----    ----    ----  45860.    ----    ----   8327.    ----

BLNK#:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----      19    ----
BLNKL:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ---- 43.5580    ----
BLNKV:    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----    ---- 44.9622    ----


Potassium is much less affected at 0.454 % (not even statistically significant) and silicon and oxygen are minor corrections (-0.87 and -3.03 % respectively, though both statistically significant).

By the way, the above calculation is for water by stoichiometry to measured excess oxygen as first described by Barbara Nash, http://www.geology.wisc.edu/courses/g777/AmMin/Nash.pdf.

Expressed as oxides the results are seen here for this glass made by Tony Withers and water determined by FTIR at 5.06 wt%:

Un   17 Withers-N5, Results in Oxide Weight Percents

ELEM:     Na2O     K2O      Cl     BaO       F    TiO2     FeO     MnO     CaO    SiO2   Al2O3     MgO       O     H2O   SUM 
   574   3.747   4.260    .205    .033    .086    .180   4.034    .078    .227  69.915  10.212    .019    .000   5.947  98.943
   575   4.142   4.284    .207    .018    .084    .207   4.014    .102    .207  70.578  10.138    .011    .000   5.311  99.303
   576   3.836   3.992    .180    .036    .100    .229   4.028    .108    .180  70.415  10.045    .001    .000   5.576  98.727
   577   3.943   4.276    .258    .046    .111    .164   4.072    .075    .165  70.295  10.274   -.001    .000   5.548  99.224
   578   4.059   4.219    .258   -.015    .083    .120   4.082    .105    .163  69.989  10.135    .015    .000   5.597  98.810
   579   4.102   4.290    .239   -.088    .070    .207   4.105    .107    .182  70.196  10.257    .009    .000   5.567  99.244
   580   3.831   4.253    .223    .018    .089    .169   4.020    .070    .184  70.168  10.080   -.002    .000   5.755  98.859
   581   4.285   4.166    .248   -.021    .121    .196   3.988    .064    .213  70.650  10.131    .009    .000   5.405  99.455
   582   3.942   4.222    .164   -.028    .080    .224   4.114    .065    .168  70.863  10.155    .014    .000   5.026  99.009
   583   3.895   4.139    .218   -.069    .033    .246   4.072    .040    .200  70.426  10.181    .006    .000   5.443  98.830
   584   3.980   4.073    .213    .004    .033    .207   4.020    .083    .186  70.744  10.061    .006    .000   5.256  98.865
   585   3.638   4.346    .191    .033    .071    .202   4.052    .079    .225  70.599  10.165    .010    .000   5.730  99.341

AVER:    3.950   4.210    .217   -.003    .080    .196   4.050    .081    .192  70.403  10.153    .008    .000   5.513  99.051
SDEV:     .179    .101    .030    .043    .026    .034    .039    .021    .022    .298    .071    .007    .000    .247    .248
SERR:     .052    .029    .009    .012    .008    .010    .011    .006    .006    .086    .021    .002    .000    .071
%RSD:     4.54    2.40   13.87-1523.47   33.10   17.21     .97   25.48   11.67     .42     .70   80.01  159.54    4.47
STDS:      336     374     285     835     835      22     395      25     358     162     336      12      12       0


Full details of this method are described here:

http://epmalab.uoregon.edu/reports/Withers%20hydrous%20glass.pdf
« Last Edit: November 18, 2013, 02:19:23 PM by Probeman »
The only stupid question is the one not asked!

Probeman

  • Emeritus
  • *****
  • Posts: 2836
  • Never sleeps...
    • John Donovan
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #2 on: November 18, 2013, 02:53:32 PM »
All this is great, so what's the problem?

Well as mentioned previously, sometimes we have to focus the beam and/or increase the beam current and this can cause a number of additional artifacts. The first I will focus on is the so called "incubation time" described by Stuart Kearns which can be seen in a number of compositions, but the high Na glasses prepared for NIST provides extremely beam sensitive materials that can be useful in these investigations, as we can see here in the low time resolution TDI acquisition on K-0373 NIST glass (10 nA, 10 um):



A higher time resolution TDI acquisition will make this artifact even more obvious:



I suspect that what we are seeing here with this "incubation time" is the warming of the sample by the electron beam. That is to say, ion migration of alkali elements towards the sub surface charge implanted by the electron probe does not start, until the sample spot is heated sufficiently. This hypothesis is further supported by a number of acquisitions where it is observed that it is the first point that almost always shows this "incubation time" effect most strongly. In the previous 10 nA, 20 um beam TDI acquisition it can be seen by displaying all the data points for the sample as seen here:



This can also be confirmed by displaying the x and y stage positions of these analyses as seen here:



Note that with a 10 um beam, the 10 um spaced points are essentially adjacent, and therefore the previous point provides a heating time to eliminate sufficient to reduce the "incubation time".  Which brings me to a partial solution for this issue.

Clearly if the "incubation time" is variable due to the proximity of previous TDI acquisitions we will have to be more careful about our selection of points for analysis. But if the "incubation time" is fairly reproducible we could utilize a delay in acquisition after the faraday cup is removed, but before the intensity acquisition begins. Interestingly enough, this feature is already built into Probe for EPMA but intended for another application. Called the "Decontamination Time" it was intended to be used for carbon analysis (Pinard and Richter) to allow time for the native hydrocarbon layer on the sample to be removed prior to the count integration as seen here:



So what's next?  Let's examine some other TDI acquisition log slopes more carefully, starting with this acquisition on yet another high Na NIST glass (K-1718) at 10 nA and 10 um, which shows several slopes in exponential space as seen here:



What's a micro analyst to do?
« Last Edit: December 21, 2015, 07:48:56 AM by John Donovan »
The only stupid question is the one not asked!

qEd

  • Professor
  • ****
  • Posts: 26
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #3 on: November 19, 2013, 08:35:40 AM »
Oh so back to the problematic issue of slope dermination. The first order approach any salt of the earth spectroscopist would use involves displaying the 1st derivative followed by user interaction by defining the range of time over which the slope is determined.

qEd

  • Professor
  • ****
  • Posts: 26
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #4 on: November 19, 2013, 10:16:53 AM »
Breaking out the slope of the earliest/first time dependency mechanism is the most (or only) critical measurement to make as it directly impacts the magnitide of the signal at t=0 unless you are studying the ongoing physics of e- beam-matter interaction itself.

For the materials I have examined such changes take place over relatively short periods of time secs. Hence the challenge is to collect data at short intervals, at the expense of statistics. Once too much time has passed you are potentially either 1)within another of damage regime, or 2) have integrated over an interval so large the slope of the natural log curve is less accurate.
« Last Edit: November 19, 2013, 11:57:00 AM by qEd »

Probeman

  • Emeritus
  • *****
  • Posts: 2836
  • Never sleeps...
    • John Donovan
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #5 on: November 19, 2013, 02:19:51 PM »
Hi Ed,
I agree completely, especially on the point that we are dealing with several different physical regimes with different time scales, e.g., thermal conductivity vs. ion migration vs. sub surface charge dissapation, but here are my two points (worth one cent each).

1. It is usually better if there is less human subjectivity involved in any analytical procedure. Yes, I could add several user adjustable parameters, but I have found that humans (and I think I can include myself in that group!), have difficulty not adjusting things to the way they want it to be, as opposed to a purely statistical/mathematical decision made by the computer.

So maybe the program should alternately try different fit models until it finds the least average deviation?

What I'm getting at is maybe adding an exponential fit to the existing linear (exponential) and quadratic (hyper-exponential) models, which means in log space we now have a double exponential fit, is worth a try. Such considerations are what this topic is for.

2. The long term (40 or more seconds) TDI acquisition might not only be useful for physics modeling. Maybe it will be possible to back out water vs. hydroxyl based on the slope at different time periods. Yes, I just made that up, but we don't know what we don't know!

Basically I think that I'd like to have the most robust fit available for whatever the data looks like and I agree, it might be that we want to count short TDI intervals to capture the initial intensity at time = 0, but that doesn't mean that we should have to acquire TDI data that way- maybe we have a beam sensitive trace element?

So let's look at where we are on the most beam sensitive material that I have found, the K-1781 NIST glass. Here is an analysis, 10 nA, 10 um *without* any TDI correction:

St  171 Set   9 K-1718 NBS Glass, Results in Elemental Weight Percents

SPEC:        O
TYPE:     SPEC

AVER:   43.050
SDEV:     .000
 
ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    40.00   40.00   40.00   40.00   40.00
BEAM:    10.58   10.58   10.58   10.58   10.58

ELEM:       Na      Si      Ca      Fe       P   SUM 
    56   7.849  29.765   4.000  11.140    .008  95.813
    57   7.696  30.010   3.958  11.078   -.017  95.775
    58   8.004  29.527   3.969  11.224   -.029  95.746
    59   7.703  29.477   3.985  11.022    .040  95.277
    60   7.822  29.776   3.952  11.185    .044  95.829

AVER:    7.815  29.711   3.973  11.130    .009  95.688
SDEV:     .126    .215    .020    .081    .033    .232
SERR:     .056    .096    .009    .036    .015
%RSD:     1.61     .72     .50     .73  349.44

PUBL:   14.837  28.048   3.574  10.491    n.a. 100.000
%VAR:   -47.33    5.93   11.17    6.09     ---
DIFF:   -7.022   1.663    .399    .639     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    76.73   79.39  602.77   66.49   40.15

UNKF:    .0382   .2422   .0367   .0945   .0001
UNCT:    39.89   46.89   61.54   66.11     .02
UNBG:      .31     .13    1.04     .98     .06

ZCOR:   2.0450  1.2267  1.0819  1.1776  1.4231
KRAW:    .5199   .5906   .1021   .9944   .0004
PKBG:   143.98  389.44   60.42   69.66     .50


Only a -50% error! Now the same measurements with the linear (exponential) TDI fit:

St  171 Set   9 K-1718 NBS Glass, Results in Elemental Weight Percents

SPEC:        O
TYPE:     SPEC

AVER:   43.050
SDEV:     .000
 
ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    40.00   40.00   40.00   40.00   40.00
BEAM:    10.58   10.58   10.58   10.58   10.58

ELEM:       Na      Si      Ca      Fe       P   SUM 
    56  17.153  28.107   3.841  11.115    .008 103.273
    57  16.928  26.992   3.739  11.054   -.017 101.746
    58  17.702  27.520   3.730  11.198   -.029 103.172
    59  16.806  27.754   3.718  10.997    .040 102.365
    60  17.048  27.434   3.747  11.160    .044 102.484

AVER:   17.128  27.561   3.755  11.105    .009 102.608
SDEV:     .346    .411    .049    .081    .033    .628
SERR:     .155    .184    .022    .036    .015
%RSD:     2.02    1.49    1.31     .73  348.95

PUBL:   14.837  28.048   3.574  10.491    n.a. 100.000
%VAR:    15.44   -1.73    5.08    5.85     ---
DIFF:    2.291   -.487    .181    .614     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    78.13   79.81  605.49   66.49   40.15

UNKF:    .0875   .2181   .0348   .0945   .0001
UNCT:    93.06   42.45   58.61   66.11     .02
UNBG:      .31     .13    1.04     .98     .06

ZCOR:   1.9564  1.2636  1.0786  1.1749  1.4144
KRAW:   1.1911   .5319   .0968   .9944   .0004
PKBG:   335.08  353.48   57.57   69.66     .50

TDI%:  133.257  -9.459  -4.765    ----    ----
DEV%:      7.1     2.7     2.5    ----    ----
TDIF:   LINEAR  QUADRA  LINEAR    ----    ----
TDIT:    94.00   94.00   92.80    ----    ----
TDII:     84.3    42.4    59.5    ----    ----


Now only a +15% error. Next we use the quadratic (hyper-exponential) fit:

St  171 Set   9 K-1718 NBS Glass, Results in Elemental Weight Percents

SPEC:        O
TYPE:     SPEC

AVER:   43.050
SDEV:     .000
 
ELEM:       Na      Si      Ca      Fe       P
BGDS:      LIN     EXP     LIN     LIN     EXP
TIME:    40.00   40.00   40.00   40.00   40.00
BEAM:    10.58   10.58   10.58   10.58   10.58

ELEM:       Na      Si      Ca      Fe       P   SUM 
    56  16.267  28.049   3.841  11.117    .008 102.332
    57  15.369  26.894   3.739  11.058   -.017 100.093
    58  15.942  27.409   3.731  11.203   -.029 101.305
    59  15.072  27.641   3.719  11.002    .040 100.523
    60  15.408  27.329   3.748  11.164    .044 100.744

AVER:   15.611  27.464   3.756  11.109    .009 100.999
SDEV:     .482    .424    .049    .081    .033    .864
SERR:     .216    .190    .022    .036    .015
%RSD:     3.09    1.55    1.30     .73  348.95

PUBL:   14.837  28.048   3.574  10.491    n.a. 100.000
%VAR:     5.22   -2.08    5.10    5.89     ---
DIFF:     .774   -.584    .182    .618     ---
STDS:      336      14     285     162     285

STKF:    .0735   .4101   .3596   .0950   .1599
STCT:    78.13   79.81  605.49   66.49   40.15

UNKF:    .0791   .2181   .0348   .0945   .0001
UNCT:    84.09   42.45   58.61   66.11     .02
UNBG:      .31     .13    1.04     .98     .06

ZCOR:   1.9735  1.2591  1.0788  1.1754  1.4140
KRAW:   1.0763   .5319   .0968   .9944   .0004
PKBG:   302.73  353.48   57.57   69.66     .50

TDI%:  110.768  -9.459  -4.765    ----    ----
DEV%:      3.8     2.7     2.5    ----    ----
TDIF:   QUADRA  QUADRA  LINEAR    ----    ----
TDIT:    94.00   94.00   92.80    ----    ----
TDII:     84.1    42.4    59.5    ----    ----


Now we have "only" a +5% relative error on Na and this is with a 110% correction to the intensity. Is it perfect? No. Is it better than a poke in the eye with a sharp stick? Yes, and then some.
« Last Edit: November 19, 2013, 10:05:09 PM by John Donovan »
The only stupid question is the one not asked!

qEd

  • Professor
  • ****
  • Posts: 26
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #6 on: November 20, 2013, 08:40:23 AM »
John,
I understand your point about designing the software with the least fraction of user bias. SO one option would be to compute the instantaneous slope at time steps. E.g. the first 3-4 slopes computed are similar to within X%, you are done and can analyze the material. If however, the values are not simlilar to within that tolerance, expand the number of slopes by some amount to increase  the population, if the new SD "converges", you are done. If that value becomes larger then I am not smart enough to recommend an unbiased method for automated analysis and recommend the user intervene as a post collection Analyze! step.

Probeman

  • Emeritus
  • *****
  • Posts: 2836
  • Never sleeps...
    • John Donovan
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #7 on: November 20, 2013, 03:10:26 PM »
Wow, that is a good idea, though I'm not sure I'm smart enough to code it!

In the meantime, while I think about how your idea might be implemented, here's an option that many might not know about, that I find useful for the very reason we've been discussing (that the first TDI points are the most valuable points for extrapolating to zero time).

Let's start with a normal obsidian glass analysis, this was acquired with Combined Conditions, so the major elements are acquired as a lower beam current (10 nA) than the traces (50 nA) as seen here:



Using *no* TDI correction we get these results for quantification:

Un    6 Obsidian trav1
(Magnification (analytical) =  20000),        Beam Mode = Analog  Spot
(Magnification (default) =     2524, Magnification (imaging) =    736)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:  50             Number of 'Good' Data Lines:  18
First/Last Date-Time: 11/19/2013 05:52:20 PM to 11/20/2013 12:08:21 AM
WARNING- Using Exponential Off-Peak correction for p ka
WARNING- Using Exponential Off-Peak correction for zr la

Average Total Oxygen:       48.564     Average Total Weight%:   97.796
Average Calculated Oxygen:  48.564     Average Atomic Number:   11.176
Average Excess Oxygen:        .000     Average Atomic Weight:   20.541
Oxygen Equiv. from Halogen:   .008  Halogen Corrected Oxygen:   48.555
Average ZAF Iteration:        3.00     Average Quant Iterate:     4.00

Oxygen Calculated by Cation Stoichiometry and Included in the Matrix Correction
Oxygen Equivalent from Halogens (F/Cl/Br/I), Not Subtracted in the Matrix Correction

Combined Analytical Condition Arrays:
ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr
TAKE:     40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0    40.0
KILO:     15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0    15.0
CURR:     10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    50.0    50.0    50.0    50.0    50.0
SIZE:     10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0    10.0

Un    6 Obsidian trav1, Results in Elemental Weight Percents
 
ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC
BGDS:      MAN     MAN     LIN     MAN     MAN     MAN     MAN     LIN     LIN     LIN     LIN     LIN     EXP     EXP
TIME:    90.00   60.00   20.00   80.00   60.00  160.00   80.00   40.00   30.00  100.00  100.00  100.00  100.00  100.00
BEAM:     9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99   50.29   50.29   50.29   50.29   50.29

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H   SUM 
   178   1.770  35.590   3.816   7.044    .024    .511    .356    .060    .071    .002    .044    .036    .001   -.010  48.570    .000  97.884
   179   1.762  35.561   3.809   7.033    .016    .501    .351    .007    .048    .003    .046    .046   -.004   -.011  48.496    .000  97.663
   180   1.775  35.653   3.788   7.074    .017    .443    .364    .016    .046    .003    .042    .028   -.004    .006  48.622    .000  97.872
   181   1.815  35.576   3.802   6.993    .017    .471    .362    .032    .055   -.001    .039    .050   -.003   -.009  48.503    .000  97.703
   182   1.809  35.728   3.724   7.057    .021    .496    .369   -.021    .053   -.001    .041    .027    .000   -.008  48.706    .000  98.001
   183   1.829  35.621   3.802   7.019    .022    .465    .371   -.003    .058   -.001    .040    .037   -.003   -.006  48.573    .000  97.824
   184   1.855  35.658   3.775   7.054    .019    .516    .358   -.006    .064    .002    .035    .038   -.003    .001  48.662    .000  98.028
   185   1.861  35.641   3.807   6.993    .023    .493    .365   -.009    .040    .002    .036    .020   -.001   -.020  48.573    .000  97.825
   186   1.826  35.627   3.804   7.037    .024    .466    .363   -.017    .039    .001    .033    .037    .000    .000  48.594    .000  97.836
   187   1.831  35.592   3.831   6.959    .023    .462    .354    .040    .033    .000    .036    .042   -.005   -.010  48.487    .000  97.674
   188   1.829  35.573   3.765   7.059    .016    .403    .351    .031    .040    .001    .034    .023    .000   -.002  48.514    .000  97.637
   189   1.855  35.602   3.849   7.017    .019    .386    .355    .007    .029    .001    .033    .030    .003   -.006  48.534    .000  97.715
   190   1.861  35.704   3.837   7.054    .016    .426    .343    .032    .042    .002    .033    .027   -.006   -.015  48.680    .000  98.037
   191   1.832  35.588   3.759   7.006    .019    .439    .352    .001    .047   -.002    .034    .039   -.002   -.020  48.494    .000  97.586
   192   1.842  35.558   3.805   7.003    .018    .460    .361    .037    .064   -.001    .034    .034   -.001   -.006  48.494    .000  97.703
   193   1.876  35.672   3.773   6.995    .019    .476    .366    .032    .051    .000    .034    .031    .000   -.012  48.623    .000  97.937
   194   1.789  35.682   3.836   7.001    .019    .465    .351   -.013    .055   -.001    .035    .020   -.002   -.008  48.596    .000  97.825
   195   1.865  35.482   3.772   7.013    .016    .471    .352    .065    .040    .000    .035    .049    .004   -.018  48.427    .000  97.573

AVER:    1.827  35.617   3.797   7.023    .019    .464    .358    .016    .049    .001    .037    .034   -.001   -.009  48.564    .000  97.796
SDEV:     .035    .060    .032    .030    .003    .035    .008    .026    .011    .002    .004    .009    .003    .007    .076    .000    .147
SERR:     .008    .014    .008    .007    .001    .008    .002    .006    .003    .000    .001    .002    .001    .002    .018    .000
%RSD:     1.89     .17     .84     .43   14.75    7.53    2.11  161.28   23.09  265.87   10.91   26.42 -199.09  -82.48     .16     .00
STDS:      336      14     374     160     162     162     162     251      25     730     285      22     285     257       0       0

STKF:    .0735   .4101   .1132   .0334   .0568   .0950   .1027   .4268   .7341   .5061   .0601   .5547   .1599   .4201   .0000   .0000
STCT:    71.42  566.01  224.55   62.55   81.21   18.31  161.20  292.31 2053.05  449.51   79.86   58.15  227.12  213.15     .00     .00

UNKF:    .0100   .2943   .0329   .0559   .0001   .0039   .0032   .0001   .0004   .0000   .0003   .0003   .0000  -.0001   .0000   .0000
UNCT:     9.75  406.17   65.30  104.57     .19     .75    5.02     .09    1.12     .00     .39     .03    -.01    -.03     .00     .00
UNBG:      .32     .22     .94     .89     .52     .23    1.01     .94    4.78     .16     .33     .05     .81     .88     .00     .00

ZCOR:   1.8208  1.2103  1.1537  1.2567  1.4293  1.1985  1.1194  1.2284  1.2180  1.2872  1.2540  1.1978  1.4649  1.4613   .0000   .0000
KRAW:    .1365   .7176   .2908  1.6717   .0024   .0407   .0312   .0003   .0005   .0000   .0049   .0005  -.0001  -.0001   .0000   .0000
PKBG:    31.48 1852.73   70.81  118.92    1.37    4.30    5.97    1.11    1.24    1.03    2.20    1.65     .98     .97     .00     .00
INT%:     ----    ----    ----    ----    ----    -.01    ----  -94.80    ----    ----    ----    ----    ----    ----    ----    ----


Obviously the totals are low, so we might suspect a TDI situation (even though we used a 10 um beam for all the points). If we examine the TDI data (I almost always just leave this acquisition option turned on because it uses very little overhead, and if you do run into a TDI situation you already have the intensity interval data to perform a TDI correction), you'll see a significant decrease in the Na intensities over time as seen here:



For Si ka the situation is less dire (and is barely statistically significant), but worth a correction:



Al ka is somewhat more statistically significant as seen here:



The results for these linear (exponential) extrapolations are seen here:

Un    6 Obsidian trav1, Results in Elemental Weight Percents
 
ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC
BGDS:      MAN     MAN     LIN     MAN     MAN     MAN     MAN     LIN     LIN     LIN     LIN     LIN     EXP     EXP
TIME:    90.00   60.00   20.00   80.00   60.00  160.00   80.00   40.00   30.00  100.00  100.00  100.00  100.00  100.00
BEAM:     9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99   50.29   50.29   50.29   50.29   50.29

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H   SUM 
   178   3.458  35.730   3.773   7.123    .025    .509    .356    .061    .071    .002    .044    .036    .001   -.010  49.379    .000 100.556
   179   3.582  35.538   3.941   6.956    .017    .467    .351    .008    .048    .003    .046    .045   -.004   -.011  49.052    .000 100.038
   180   3.500  35.492   3.746   6.986    .019    .428    .364    .018    .046    .003    .042    .028   -.004    .006  48.949    .000  99.621
   181   3.414  35.456   3.844   6.899    .018    .454    .362    .034    .055   -.001    .039    .050   -.003   -.009  48.843    .000  99.455
   182   3.611  35.556   3.657   7.047    .022    .476    .369   -.018    .053   -.001    .041    .027    .000   -.008  49.110    .000  99.943
   183   3.451  35.456   3.873   7.107    .023    .487    .371    .000    .058   -.001    .040    .037   -.003   -.006  49.050    .000  99.944
   184   3.550  35.447   3.738   6.971    .020    .501    .358   -.003    .064    .002    .035    .038   -.003    .001  48.927    .000  99.646
   185   3.516  35.604   3.797   6.893    .024    .414    .365   -.008    .040    .002    .036    .020   -.001   -.020  48.993    .000  99.676
   186   3.600  35.384   3.810   7.045    .026    .428    .363   -.014    .039    .001    .033    .037    .000    .000  48.933    .000  99.685
   187   3.442  35.291   3.888   6.912    .024    .454    .354    .044    .033    .000    .036    .042   -.005   -.010  48.673    .000  99.178
   188   3.502  35.386   3.720   7.048    .017    .406    .351    .033    .040    .001    .034    .023    .000   -.002  48.865    .000  99.424
   189   3.609  35.398   3.754   7.058    .020    .376    .355    .010    .029    .001    .033    .030    .003   -.006  48.927    .000  99.596
   190   3.459  35.330   3.871   7.052    .018    .453    .343    .036    .042    .002    .033    .027   -.006   -.015  48.824    .000  99.469
   191   3.454  35.410   3.676   6.966    .020    .477    .351    .004    .047   -.002    .034    .039   -.002   -.020  48.815    .000  99.269
   192   3.526  35.369   3.813   6.985    .020    .488    .360    .040    .063   -.001    .034    .034   -.001   -.006  48.860    .000  99.586
   193   3.650  35.608   3.663   7.046    .021    .452    .366    .034    .051    .000    .034    .031    .000   -.012  49.184    .000 100.128
   194   3.528  35.638   3.694   7.110    .020    .512    .351   -.011    .055   -.001    .035    .020   -.002   -.008  49.234    .000 100.175
   195   3.533  35.369   3.739   7.109    .017    .472    .352    .067    .040    .000    .035    .049    .004   -.018  48.959    .000  99.728

AVER:    3.521  35.470   3.778   7.017    .021    .459    .358    .018    .049    .001    .037    .034   -.001   -.009  48.977    .000  99.729
SDEV:     .068    .119    .083    .074    .003    .037    .008    .026    .011    .002    .004    .009    .003    .007    .170    .000    .347
SERR:     .016    .028    .020    .017    .001    .009    .002    .006    .003    .000    .001    .002    .001    .002    .040    .000
%RSD:     1.94     .34    2.19    1.06   14.11    8.09    2.12  140.65   23.09  265.87   10.91   26.43 -199.11  -82.49     .35     .00
STDS:      336      14     374     160     162     162     162     251      25     730     285      22     285     257       0       0

STKF:    .0735   .4101   .1132   .0334   .0568   .0950   .1027   .4268   .7341   .5061   .0601   .5547   .1599   .4201   .0000   .0000
STCT:    70.51  567.11  225.51   62.06   81.21   18.46  161.20  292.31 2053.05  449.51   79.86   58.15  227.12  213.15     .00     .00

UNKF:    .0195   .2914   .0328   .0552   .0001   .0038   .0032   .0001   .0004   .0000   .0003   .0003   .0000  -.0001   .0000   .0000
UNCT:    18.68  403.03   65.30  102.52     .20     .74    5.02     .10    1.12     .00     .39     .03    -.01    -.03     .00     .00
UNBG:      .32     .22     .94     .88     .51     .23    1.01     .94    4.78     .16     .33     .05     .81     .88     .00     .00

ZCOR:   1.8086  1.2170  1.1526  1.2706  1.4508  1.1979  1.1182  1.2346  1.2173  1.2854  1.2525  1.1969  1.4626  1.4590   .0000   .0000
KRAW:    .2649   .7107   .2896  1.6521   .0025   .0403   .0312   .0004   .0005   .0000   .0049   .0005  -.0001  -.0001   .0000   .0000
PKBG:    59.19 1852.27   70.83  117.93    1.40    4.30    5.98    1.12    1.24    1.03    2.20    1.65     .98     .97     .00     .00
INT%:     ----    ----    ----    ----    ----    -.02    ----  -93.93    ----    ----    ----    ----    ----    ----    ----    ----

TDI%:   88.751   -.772   -.008  -1.945    ----   -.173    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
DEV%:      5.8      .7     2.8     1.2    ----     8.4    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIF:   LINEAR  LINEAR  LINEAR  LINEAR    ----  LINEAR    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIT:   125.56   97.78   61.11  117.28    ----  198.17    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDII:     18.5    403.    66.2    103.    ----    .963    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----


The totals look good, but are we done? Well if we look more closely at the Na TDI plot above, we see that there seems to be a slight curvature in the linear (exponential) fit, so maybe we should utilize the quadratic fit in log space or "hyper-exponential" fit as seen here:



How does this tiny change affect our results? Not that much, but a little. Note the difference in the average deviation in the linear and quadratic fits for Na. The linear (conventional exponential fit) has a DEV% of 5.8, while the "hyper-exponential" (quadratic exponential fit) has a DEV% of 3.4, so the hyper-exponential is definitetely a better fit to the data as seen here:

Un    6 Obsidian trav1, Results in Elemental Weight Percents
 
ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC
BGDS:      MAN     MAN     LIN     MAN     MAN     MAN     MAN     LIN     LIN     LIN     LIN     LIN     EXP     EXP
TIME:    90.00   60.00   20.00   80.00   60.00  160.00   80.00   40.00   30.00  100.00  100.00  100.00  100.00  100.00
BEAM:     9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99   50.29   50.29   50.29   50.29   50.29

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H   SUM 
   178   3.348  35.718   3.773   7.118    .025    .509    .356    .061    .071    .002    .044    .036    .001   -.010  49.322    .000 100.373
   179   3.491  35.527   3.941   6.952    .017    .467    .351    .008    .048    .003    .046    .045   -.004   -.011  49.004    .000  99.885
   180   3.286  35.467   3.747   6.976    .018    .428    .364    .018    .046    .003    .042    .028   -.004    .006  48.838    .000  99.264
   181   3.284  35.442   3.844   6.893    .018    .454    .362    .034    .055   -.001    .039    .050   -.003   -.009  48.776    .000  99.238
   182   3.335  35.524   3.658   7.035    .022    .476    .369   -.018    .053   -.001    .041    .027    .000   -.008  48.967    .000  99.481
   183   3.360  35.446   3.873   7.103    .023    .487    .371    .000    .058   -.001    .040    .037   -.003   -.006  49.003    .000  99.790
   184   3.379  35.427   3.739   6.964    .020    .501    .358   -.003    .064    .002    .035    .038   -.003    .001  48.839    .000  99.361
   185   3.540  35.606   3.797   6.895    .024    .414    .365   -.008    .040    .002    .036    .020   -.001   -.020  49.006    .000  99.717
   186   3.517  35.375   3.810   7.041    .026    .428    .363   -.014    .039    .001    .033    .037    .000    .000  48.890    .000  99.545
   187   3.432  35.290   3.888   6.912    .024    .454    .354    .044    .033    .000    .036    .042   -.005   -.010  48.668    .000  99.161
   188   3.320  35.365   3.720   7.040    .017    .406    .351    .033    .040    .001    .034    .023    .000   -.002  48.771    .000  99.118
   189   3.309  35.364   3.754   7.044    .020    .376    .355    .010    .029    .001    .033    .030    .003   -.006  48.772    .000  99.094
   190   3.479  35.332   3.871   7.053    .018    .453    .343    .036    .042    .002    .033    .027   -.006   -.015  48.834    .000  99.501
   191   3.412  35.405   3.676   6.964    .020    .477    .351    .004    .047   -.002    .034    .039   -.002   -.020  48.793    .000  99.198
   192   3.431  35.358   3.813   6.981    .019    .488    .360    .040    .063   -.001    .034    .034   -.001   -.006  48.811    .000  99.427
   193   3.423  35.582   3.663   7.036    .020    .452    .366    .034    .051    .000    .034    .031    .000   -.012  49.066    .000  99.747
   194   3.390  35.623   3.695   7.104    .020    .512    .351   -.011    .055   -.001    .035    .020   -.002   -.008  49.163    .000  99.944
   195   3.324  35.346   3.740   7.099    .017    .472    .352    .067    .040    .000    .035    .049    .004   -.018  48.851    .000  99.379

AVER:    3.392  35.455   3.778   7.012    .020    .459    .358    .019    .049    .001    .037    .034   -.001   -.009  48.910    .000  99.512
SDEV:     .079    .118    .083    .073    .003    .037    .008    .026    .011    .002    .004    .009    .003    .007    .162    .000    .341
SERR:     .019    .028    .019    .017    .001    .009    .002    .006    .003    .000    .001    .002    .001    .002    .038    .000
%RSD:     2.32     .33    2.19    1.03   14.25    8.09    2.12  140.57   23.09  265.88   10.91   26.43 -199.12  -82.46     .33     .00
STDS:      336      14     374     160     162     162     162     251      25     730     285      22     285     257       0       0

STKF:    .0735   .4101   .1132   .0334   .0568   .0950   .1027   .4268   .7341   .5061   .0601   .5547   .1599   .4201   .0000   .0000
STCT:    70.51  567.11  225.51   62.06   81.21   18.46  161.20  292.31 2053.05  449.51   79.86   58.15  227.12  213.15     .00     .00

UNKF:    .0187   .2914   .0328   .0552   .0001   .0038   .0032   .0001   .0004   .0000   .0003   .0003   .0000  -.0001   .0000   .0000
UNCT:    17.98  403.03   65.30  102.52     .20     .74    5.02     .10    1.12     .00     .39     .03    -.01    -.03     .00     .00
UNBG:      .32     .22     .94     .88     .51     .23    1.01     .94    4.78     .16     .33     .05     .81     .88     .00     .00

ZCOR:   1.8095  1.2165  1.1527  1.2696  1.4493  1.1979  1.1183  1.2342  1.2174  1.2855  1.2526  1.1969  1.4627  1.4597   .0000   .0000
KRAW:    .2550   .7107   .2896  1.6521   .0025   .0403   .0312   .0004   .0005   .0000   .0049   .0005  -.0001  -.0001   .0000   .0000
PKBG:    57.04 1851.22   70.83  117.83    1.39    4.30    5.97    1.12    1.24    1.03    2.20    1.65     .98     .97     .00     .00
INT%:     ----    ----    ----    ----    ----    -.02    ----  -93.93    ----    ----    ----    ----    ----    ----    ----    ----

TDI%:   81.846   -.772   -.008  -1.945    ----   -.173    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
DEV%:      3.4      .7     2.8     1.2    ----     8.4    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIF:   QUADRA  LINEAR  LINEAR  LINEAR    ----  LINEAR    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIT:   125.56   97.78   61.11  117.28    ----  198.17    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDII:     18.3    403.    66.2    103.    ----    .963    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----


And our Na value went from 3.5 wt% to just under 3.4 wt%. Not much, remember the fit is better, so it should be a better extrapolation.

Now what about Ed's point about the early TDI intervals being more important for the extrapolation?

If we pull up the Analytical | Analysis Options menu dialog, in addition to a global flag for toggling all TDI corrections in the run, we also see the Use Time Weighted data for TFI Fit option. Let's turn that on and use the default 8 weighting factor which means that the first TDI point will be duplicated 8 times, the 2nd TDI point 7 times, the 3rd TDI point 6 times, etc., etc., before being fit!



Now what does our Na data look like?

Un    6 Obsidian trav1, Results in Elemental Weight Percents
 
ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H
TYPE:     ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    ANAL    CALC    SPEC
BGDS:      MAN     MAN     LIN     MAN     MAN     MAN     MAN     LIN     LIN     LIN     LIN     LIN     EXP     EXP
TIME:    90.00   60.00   20.00   80.00   60.00  160.00   80.00   40.00   30.00  100.00  100.00  100.00  100.00  100.00
BEAM:     9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99    9.99   50.29   50.29   50.29   50.29   50.29

ELEM:       Na      Si       K      Al      Mg      Fe      Ca      Sr      Mn       S      Cl      Ti       P      Zr       O       H   SUM 
   178   3.086  35.654   3.801   7.090    .025    .497    .356    .061    .071    .002    .044    .036    .001   -.010  49.135    .000  99.848
   179   3.321  35.488   3.953   6.886    .017    .483    .351    .008    .048    .003    .046    .045   -.004   -.011  48.849    .000  99.483
   180   3.273  35.258   3.674   7.076    .018    .417    .364    .020    .046    .003    .042    .028   -.004    .006  48.666    .000  98.887
   181   3.121  35.403   3.897   6.847    .018    .480    .362    .034    .055   -.001    .039    .050   -.003   -.009  48.652    .000  98.946
   182   3.300  35.628   3.621   6.982    .022    .534    .369   -.019    .053   -.001    .041    .027    .000   -.008  49.035    .000  99.584
   183   3.354  35.546   3.822   7.081    .023    .494    .371   -.001    .058   -.001    .040    .037   -.003   -.006  49.088    .000  99.904
   184   3.277  35.309   3.695   6.935    .020    .471    .358   -.003    .064    .002    .035    .038   -.003    .001  48.626    .000  98.824
   185   3.450  35.538   3.764   6.835    .024    .418    .365   -.008    .040    .002    .036    .020   -.001   -.020  48.838    .000  99.302
   186   3.465  35.431   3.717   7.048    .026    .441    .363   -.015    .039    .001    .033    .037    .000    .000  48.925    .000  99.510
   187   3.366  35.184   3.895   6.827    .024    .475    .354    .044    .033    .000    .036    .042   -.005   -.010  48.456    .000  98.721
   188   3.155  35.356   3.740   6.979    .016    .392    .351    .033    .040    .001    .034    .023    .000   -.002  48.649    .000  98.768
   189   3.186  35.214   3.775   7.030    .020    .372    .355    .011    .029    .001    .033    .030    .003   -.006  48.549    .000  98.601
   190   3.365  35.294   3.854   7.085    .017    .473    .343    .036    .042    .002    .033    .027   -.006   -.015  48.783    .000  99.335
   191   3.305  35.340   3.648   6.952    .020    .475    .351    .004    .047   -.002    .034    .039   -.002   -.020  48.664    .000  98.854
   192   3.403  35.474   3.750   6.899    .019    .460    .360    .039    .063   -.001    .034    .034   -.001   -.006  48.840    .000  99.371
   193   3.304  35.654   3.683   7.005    .020    .446    .366    .033    .051    .000    .034    .031    .000   -.012  49.082    .000  99.699
   194   3.209  35.320   3.662   7.111    .020    .539    .351   -.009    .055   -.001    .035    .020   -.002   -.008  48.762    .000  99.064
   195   3.181  35.328   3.741   7.089    .017    .476    .352    .067    .040    .000    .035    .049    .004   -.018  48.774    .000  99.136

AVER:    3.284  35.412   3.761   6.987    .020    .464    .358    .019    .049    .001    .037    .034   -.001   -.009  48.798    .000  99.213
SDEV:     .110    .148    .094    .097    .003    .044    .008    .026    .011    .002    .004    .009    .003    .007    .195    .000    .403
SERR:     .026    .035    .022    .023    .001    .010    .002    .006    .003    .000    .001    .002    .001    .002    .046    .000
%RSD:     3.33     .42    2.50    1.38   14.35    9.44    2.12  138.43   23.09  265.87   10.91   26.43 -199.12  -82.49     .40     .00
STDS:      336      14     374     160     162     162     162     251      25     730     285      22     285     257       0       0

STKF:    .0735   .4101   .1132   .0334   .0568   .0950   .1027   .4268   .7341   .5061   .0601   .5547   .1599   .4201   .0000   .0000
STCT:    71.55  568.51  226.21   62.09   81.21   18.33  161.20  292.31 2053.05  449.51   79.86   58.15  227.12  213.15     .00     .00

UNKF:    .0181   .2912   .0326   .0551   .0001   .0039   .0032   .0002   .0004   .0000   .0003   .0003   .0000  -.0001   .0000   .0000
UNCT:    17.66  403.69   65.20  102.27     .20     .75    5.02     .10    1.12     .00     .39     .03    -.01    -.03     .00     .00
UNBG:      .32     .22     .94     .88     .51     .23    1.01     .94    4.78     .16     .33     .05     .81     .88     .00     .00

ZCOR:   1.8103  1.2161  1.1528  1.2688  1.4481  1.1980  1.1184  1.2337  1.2174  1.2857  1.2528  1.1970  1.4629  1.4594   .0000   .0000
KRAW:    .2468   .7101   .2882  1.6472   .0025   .0407   .0312   .0004   .0005   .0000   .0049   .0005  -.0001  -.0001   .0000   .0000
PKBG:    56.05 1853.28   70.71  117.47    1.39    4.31    5.97    1.12    1.24    1.03    2.20    1.65     .98     .97     .00     .00
INT%:     ----    ----    ----    ----    ----    -.02    ----  -93.84    ----    ----    ----    ----    ----    ----    ----    ----

TDI%:   78.615   -.609   -.162  -2.187    ----    .092    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
DEV%:      2.5      .7     2.5     1.2    ----     7.6    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIF:   QUADRA  LINEAR  LINEAR  LINEAR    ----  LINEAR    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDIT:   125.56   97.78   61.11  117.28    ----  198.17    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----
TDII:     18.0    404.    66.1    103.    ----    .965    ----    ----    ----    ----    ----    ----    ----    ----    ----    ----


I have to say I was surprised. The time weighted data option had more effect on the data that the hyper-exponential fit (on this dataset anyway), because Na went from 3.4 wt% to 3.28 wt% *and* the overall DEV% improved to 2.5.

So, yes, Ed is correct, we should give our first TDI intervals more "weight" one way or another.
« Last Edit: March 22, 2021, 06:36:32 PM by Probeman »
The only stupid question is the one not asked!

Probeman

  • Emeritus
  • *****
  • Posts: 2836
  • Never sleeps...
    • John Donovan
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #8 on: November 28, 2013, 11:31:56 AM »
And now for something completely different!    ;D

A student recently analyzed a fiber optic as a class project and it was interesting to see the TDI effects for pure SiO2 crystal versus glass. For example, if we use SiO2 as a standard and acquire the standard also as an unknown, we get reasonable results because the TDI effects on the Si Ka and O ka are almost normalized out as seen here:

Un    7 SiO2 synthetic
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 11/27/2013 04:57:01 PM to 11/27/2013 05:21:02 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka

Average Total Oxygen:         .000     Average Total Weight%:   99.708
Average Calculated Oxygen:    .000     Average Atomic Number:   10.798
Average Excess Oxygen:        .000     Average Atomic Weight:   20.020
Oxygen Equiv. from Halogen:   .000  Halogen Corrected Oxygen:     .000
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    7 SiO2 synthetic, Results in Elemental Weight Percents
 
ELEM:       Si       O      Er      Cl
BGDS:      EXP     EXP     LIN     LIN
TIME:    40.00   40.00  160.00  160.00
BEAM:    50.09   50.09   50.09   50.09

ELEM:       Si       O      Er      Cl   SUM 
   169  46.586  53.121   -.001   -.001  99.705
   170  46.491  53.288   -.002    .001  99.777
   171  46.521  53.079    .008    .000  99.607
   172  46.599  53.152   -.009    .002  99.745
   173  46.459  53.260   -.013    .000  99.706

AVER:   46.531  53.180   -.003    .000  99.708
SDEV:     .060    .090    .008    .001    .064
SERR:     .027    .040    .004    .001
%RSD:      .13     .17 -235.67  745.15
STDS:       14      14    1003     285

STKF:    .4101   .2664   .5350   .0601
STCT:   693.09  267.64  184.31   43.90

UNKF:    .4082   .2661   .0000   .0000
UNCT:   689.96  267.40    -.01     .00
UNBG:     1.00    1.44     .82     .22

ZCOR:   1.1398  1.9985  1.5611  1.2798
KRAW:    .9955   .9991   .0000   .0000
PKBG:   692.47  186.37     .99    1.01


In addition to the TDI effects being similar (because we are analyzing the same material for both standard and unknown), they are also fairly minor in magnitude as seen here for Si Ka in SiO2 crystal:



One could even argue we are "over fitting" the Si Ka TDI correction because it is such a small correction. Which is *not* the case for O Ka in SiO2 crystal:



As has been observed by many, the oxygen intensity changes dramatically over time even with a 10 um diameter beam. In fact the TDI effect for O Ka is very dependent on subtle surface conditions such as the carbon coat. Because of this, with the TDI correction turned on for both the standard SiO2 and the same standard acquired as an unknown, we get these somewhat improved results for SiO2 analyzed as an unknown:

Un    7 SiO2 synthetic
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 11/27/2013 04:57:01 PM to 11/27/2013 05:21:02 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka
WARNING- Using Time Dependent Intensity (TDI) Element Correction

Average Total Oxygen:         .000     Average Total Weight%:   99.846
Average Calculated Oxygen:    .000     Average Atomic Number:   10.800
Average Excess Oxygen:        .000     Average Atomic Weight:   20.024
Oxygen Equiv. from Halogen:   .000  Halogen Corrected Oxygen:     .000
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    7 SiO2 synthetic, Results in Elemental Weight Percents
 
ELEM:       Si       O      Er      Cl
BGDS:      EXP     EXP     LIN     LIN
TIME:    40.00   40.00  160.00  160.00
BEAM:    50.09   50.09   50.09   50.09

ELEM:       Si       O      Er      Cl   SUM 
   169  46.629  53.392   -.001   -.001 100.019
   170  46.641  53.254   -.002    .001  99.893
   171  46.414  53.376    .007    .000  99.797
   172  46.619  52.784   -.009    .002  99.397
   173  46.856  53.279   -.013    .000 100.122

AVER:   46.632  53.217   -.003    .000  99.846
SDEV:     .157    .249    .008    .001    .280
SERR:     .070    .111    .004    .001
%RSD:      .34     .47 -230.82  747.92
STDS:       14      14    1003     285

STKF:    .4101   .2664   .5350   .0601
STCT:   699.38  249.93  184.41   50.55

UNKF:    .4092   .2662   .0000   .0000
UNCT:   697.79  249.77    -.01     .00
UNBG:     1.00    1.44     .82     .22

ZCOR:   1.1397  1.9993  1.5466  1.2799
KRAW:    .9977   .9993   .0000   .0000
PKBG:   700.33  174.14     .99    1.01

TDI%:    1.135  -6.591   -.632   -.248
DEV%:       .1      .2      .2     1.3
TDIF:   QUADRA  QUADRA  LINEAR  LINEAR
TDIT:    51.40   51.80  170.20  170.20
TDII:     698.    250.    .823    .220


From this we might conclude that even when analyzing the *same* material, it is sometimes necessary to run *both* the standard and unknown not only at similar beam conditions, but also utilizing the TDI acquisition and correction for both standard and unknown because of subtle variations in coating, adsorbed water, beam focus and thermal conductivity (etc.?).
The only stupid question is the one not asked!

Probeman

  • Emeritus
  • *****
  • Posts: 2836
  • Never sleeps...
    • John Donovan
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #9 on: December 05, 2013, 12:43:39 PM »
Ok, so I was able to do a quick run of SiO2 crystal versus SiO2 glass and here are the results. Conditions (using the Analyze! "Report" button) were:

Compositional analyses were acquired on an electron microprobe (Cameca SX100 (TCP/IP Socket)) equipped with 5 tunable wavelength dispersive spectrometers. Operating conditions were 40 degrees takeoff angle, and a beam energy of 15 keV. The beam current was 50 nA, and the beam diameter was 10 microns.

Elements were acquired using analyzing crystals LPET for Cl ka, LTAP for Al ka, TAP for Si ka, and PC1 for O ka.

The standards were Ca10(PO4)6Cl2 (halogen corrected) for Cl ka, Nepheline (partial anal.) for Al ka, and SiO2 (elemental) (#14) for Si ka, O ka.

The counting time was 60 seconds for all elements. The intensity data was corrected for Time Dependent Intensity (TDI) loss (or gain) using a self calibrated correction for Si ka, O ka, Al ka, Cl ka. The off peak counting time was 20 seconds for all elements. Off Peak correction method was Linear for Cl ka, and Exponential for O ka, Al ka, Si ka.

Unknown and standard intensities were corrected for deadtime. Standard intensities were corrected for standard drift over time.

The exponential or polynomial background fit was utilized. See John J. Donovan, Heather A. Lowers and Brian G. Rusk, Improved electron probe microanalysis of trace elements in quartz, American Mineralogist, 96, 2011

The SiO2 crystal acquisition for Si Ka looks like this:



The SiO2 crystal acquisition for O Ka looks like this:



The SiO2 glass acquisition for Si Ka looks like this:



The SiO2 glass acquisition for O Ka looks like this:



The quant results running both materials as unknowns (using SiO2 crystal as the primary standard) is here w/o the TDI correction:

Un    2 SiO2 xtal
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 12/03/2013 02:48:14 PM to 12/03/2013 02:57:40 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka
WARNING- Using Exponential Off-Peak correction for al ka

Average Total Oxygen:         .000     Average Total Weight%:  100.309
Average Calculated Oxygen:    .000     Average Atomic Number:   10.799
Average Excess Oxygen:        .000     Average Atomic Weight:   20.019
Oxygen Equiv. from Halogen:   .000  Halogen Corrected Oxygen:     .000
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    2 SiO2 xtal, Results in Elemental Weight Percents
 
ELEM:       Si       O      Al      Cl
BGDS:      EXP     EXP     EXP     LIN
TIME:    60.00   60.00   60.00   60.00
BEAM:    49.82   49.82   49.82   49.82

ELEM:       Si       O      Al      Cl   SUM 
   117  46.791  53.450    .005    .001 100.247
   118  46.767  53.493    .000    .000 100.259
   119  46.849  53.574    .001    .000 100.425
   120  46.774  53.489    .000    .003 100.266
   121  46.785  53.559    .005    .001 100.350

AVER:   46.793  53.513    .002    .001 100.309
SDEV:     .033    .052    .003    .001    .076
SERR:     .015    .023    .001    .001
%RSD:      .07     .10  121.62  104.43
STDS:      914     914     336     285

STKF:    .4101   .2664   .1331   .0601
STCT:   687.69  250.10  724.87   78.57

UNKF:    .4105   .2678   .0000   .0000
UNCT:   688.37  251.44     .10     .01
UNBG:      .98    1.38    3.19     .32

ZCOR:   1.1399  1.9982  1.2289  1.2798
KRAW:   1.0010  1.0053   .0001   .0002
PKBG:   704.90  183.81    1.03    1.04


Un    3 SiO2 glass
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 12/03/2013 03:00:25 PM to 12/03/2013 03:09:47 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka
WARNING- Using Exponential Off-Peak correction for al ka

Average Total Oxygen:         .000     Average Total Weight%:   99.375
Average Calculated Oxygen:    .000     Average Atomic Number:   10.811
Average Excess Oxygen:        .000     Average Atomic Weight:   20.040
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    3 SiO2 glass, Results in Elemental Weight Percents
 
ELEM:       Si       O      Al      Cl
BGDS:      EXP     EXP     EXP     LIN
TIME:    60.00   60.00   60.00   60.00
BEAM:    49.82   49.82   49.82   49.82

ELEM:       Si       O      Al      Cl   SUM 
   122  46.514  52.881    .004    .004  99.403
   123  46.538  52.747    .004   -.003  99.285
   124  46.572  52.861    .006   -.003  99.436
   125  46.540  52.787    .005   -.003  99.329
   126  46.586  52.829    .006    .002  99.423

AVER:   46.550  52.821    .005    .000  99.375
SDEV:     .029    .055    .001    .003    .065
SERR:     .013    .024    .000    .001
%RSD:      .06     .10   23.08 -815.86
STDS:      914     914     336     285

STKF:    .4101   .2664   .1331   .0601
STCT:   687.97  250.02  725.07   78.20

UNKF:    .4086   .2637   .0000   .0000
UNCT:   685.39  247.54     .21     .00
UNBG:      .97    1.28    3.17     .32

ZCOR:   1.1394  2.0028  1.2278  1.2803
KRAW:    .9962   .9901   .0003  -.0001
PKBG:   705.66  194.79    1.07    1.00


The SiO2 crystal looks fine because it was run at the exact same conditions as the SiO2 (crystal) standard, but the SiO2 glass is a little low in oxygen due to the different TDI effects for glass.

The quant results running both materials as unknowns (using SiO2 crystal as the primary standard) is here with the TDI correction:


Un    2 SiO2 xtal
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 12/03/2013 02:48:14 PM to 12/03/2013 02:57:40 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka
WARNING- Using Exponential Off-Peak correction for al ka
WARNING- Using Time Dependent Intensity (TDI) Element Correction

Average Total Oxygen:         .000     Average Total Weight%:  100.335
Average Calculated Oxygen:    .000     Average Atomic Number:   10.802
Average Excess Oxygen:        .000     Average Atomic Weight:   20.024
Oxygen Equiv. from Halogen:   .000  Halogen Corrected Oxygen:     .000
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    2 SiO2 xtal, Results in Elemental Weight Percents
 
ELEM:       Si       O      Al      Cl
BGDS:      EXP     EXP     EXP     LIN
TIME:    60.00   60.00   60.00   60.00
BEAM:    49.82   49.82   49.82   49.82

ELEM:       Si       O      Al      Cl   SUM 
   117  46.871  53.523    .005    .001 100.400
   118  46.788  53.315    .000    .000 100.102
   119  46.907  53.558    .001    .000 100.466
   120  46.786  53.323    .000    .003 100.113
   121  46.931  53.658    .005    .001 100.595

AVER:   46.857  53.475    .002    .001 100.335
SDEV:     .067    .151    .003    .001    .219
SERR:     .030    .068    .001    .001
%RSD:      .14     .28  121.49  112.65
STDS:      914     914     336     285

STKF:    .4101   .2664   .1331   .0601
STCT:   689.39  243.24  724.48   83.43

UNKF:    .4111   .2675   .0000   .0000
UNCT:   691.10  244.22     .10     .01
UNBG:      .98    1.38    3.19     .32

ZCOR:   1.1397  1.9994  1.2286  1.2799
KRAW:   1.0025  1.0040   .0001   .0001
PKBG:   707.67  178.58    1.03    1.04

TDI%:     .396  -2.869   -.408   -.238
DEV%:       .3      .4     2.5     9.2
TDIF:   LINEAR  QUADRA  LINEAR  LINEAR
TDIT:    84.20   84.60   83.60   84.20
TDII:     692.    244.    3.27    .331


Un    3 SiO2 glass
TakeOff = 40.0  KiloVolt = 15.0  Beam Current = 50.0  Beam Size =   10
(Magnification (analytical) =  40000),        Beam Mode = Analog  Spot
(Magnification (default) =      400, Magnification (imaging) =    800)
Image Shift (X,Y):                                          .00,   .00
Number of Data Lines:   5             Number of 'Good' Data Lines:   5
First/Last Date-Time: 12/03/2013 03:00:25 PM to 12/03/2013 03:09:47 PM
WARNING- Using Exponential Off-Peak correction for si ka
WARNING- Using Exponential Off-Peak correction for o ka
WARNING- Using Exponential Off-Peak correction for al ka
WARNING- Using Time Dependent Intensity (TDI) Element Correction

Average Total Oxygen:         .000     Average Total Weight%:  100.645
Average Calculated Oxygen:    .000     Average Atomic Number:   10.773
Average Excess Oxygen:        .000     Average Atomic Weight:   19.971
Average ZAF Iteration:        7.00     Average Quant Iterate:     2.00

Un    3 SiO2 glass, Results in Elemental Weight Percents
 
ELEM:       Si       O      Al      Cl
BGDS:      EXP     EXP     EXP     LIN
TIME:    60.00   60.00   60.00   60.00
BEAM:    49.82   49.82   49.82   49.82

ELEM:       Si       O      Al      Cl   SUM 
   122  46.507  54.165    .004    .004 100.681
   123  46.353  54.176    .004   -.003 100.530
   124  46.612  54.116    .006   -.002 100.731
   125  46.438  54.070    .005   -.002 100.510
   126  46.611  54.154    .006    .002 100.773

AVER:   46.504  54.136    .005    .000 100.645
SDEV:     .112    .043    .001    .003    .119
SERR:     .050    .019    .001    .001
%RSD:      .24     .08   22.98 -944.62
STDS:      914     914     336     285

STKF:    .4101   .2664   .1331   .0601
STCT:   689.83  243.44  724.69   83.31

UNKF:    .4075   .2724   .0000   .0000
UNCT:   685.50  248.91     .22     .00
UNBG:      .97    1.28    3.17     .32

ZCOR:   1.1411  1.9876  1.2313  1.2786
KRAW:    .9937  1.0225   .0003   .0000
PKBG:   705.77  195.85    1.07    1.00

TDI%:     .016    .554    .656   2.221
DEV%:       .3      .4     2.9     3.8
TDIF:   LINEAR  LINEAR  LINEAR  LINEAR
TDIT:    83.20   84.00   83.20   83.40
TDII:     686.    250.    3.41    .323
« Last Edit: December 06, 2013, 09:42:25 PM by John Donovan »
The only stupid question is the one not asked!

Mike Jercinovic

  • Professor
  • ****
  • Posts: 92
    • UMass Geosciences Microprobe-SEM Facility
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #10 on: February 18, 2014, 06:57:30 AM »
One thing here is that it would be nice to have the button (in std assignments) that now says "remove TDI correction" to default to "add TDI correction", so that it would be done for all TDI-specified elements, sor even better, to invoke the TDI correction by default if it has been checked to use it in Special Options (then you can default the button in std assignments to "remove TDI", but if you do click it, then the button should change to "use TDI". 

Right now we still have to click on each element and specify the use of TDI even though we have said to acquire using TDI in Special Options in Acquire.  Every time we run an analysis, we have to do this, even though the stored setup had TDI invoked.  If we do point by point acquisition and do the TDI specification on the first point of the file, it will turn it off again on the next point, so if we want to look at the numbers as we go, we have to redo the TDI on this file (in std. assignments) after each point.
« Last Edit: February 18, 2014, 09:17:53 AM by John Donovan »

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #11 on: February 18, 2014, 11:59:37 AM »
One thing here is that it would be nice to have the button (in std assignments) that now says "remove TDI correction" to default to "add TDI correction", so that it would be done for all TDI-specified elements, sor even better, to invoke the TDI correction by default if it has been checked to use it in Special Options (then you can default the button in std assignments to "remove TDI", but if you do click it, then the button should change to "use TDI". 

Hi Mike,
Let me make sure I understand what you are asking here...

Are you merely saying you want to be able to "toggle" the TDI correction on and off so one can see the analysis with and without TDI correction?  If so, you can do that from the Analytical | Analysis Options menu dialog as seen here:



In fact, every correction Probe for EPMA performs on your data can be "toggled" on and off globally for the entire run from this dialog above.

The Remove TDI Correction button in the Standard Assignments dialog actually removes the TDI assignments from the specified samples, so reversing that is problematic (maybe not so much for the *self* TDI correction, but for the *assigned* TDI correction certainly).

Quote from: Mike Jercinovic
Right now we still have to click on each element and specify the use of TDI even though we have said to acquire using TDI in Special Options in Acquire.  Every time we run an analysis, we have to do this, even though the stored setup had TDI invoked.  If we do point by point acquisition and do the TDI specification on the first point of the file, it will turn it off again on the next point, so if we want to look at the numbers as we go, we have to redo the TDI on this file (in std. assignments) after each point.

If you want to have the TDI assignments used throughout the run simply turn them on in the first sample (even if there's no data) and all subsequent samples should automatically utilize those assignments. 

On the other hand, if you're using sample setups to create new samples, make sure the specified sample setup has the TDI assignments are turned on and they should be brought forward.

The program is designed to automatically turn on the TDI assignments automatically when the sample is acquired as seen here:



Of course one can also select all samples and turn on the TDI assignments that way also. I'm probably missing something, so please let me know if I have...   
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

Mike Jercinovic

  • Professor
  • ****
  • Posts: 92
    • UMass Geosciences Microprobe-SEM Facility
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #12 on: February 18, 2014, 03:10:11 PM »
Well, we are not so much interested in toggling TDI off and on...we just would like TDI to be defaulted to actively being used once we have specified for it to do so.  Maybe it's just our system, but once we have a unknown sample setup, and have specified to use TDI in special options, and specified to use TDI in analysis options (quantitative analysis options), then go and click on the standard assignments (in analyze), click on each element we want to use TDI (U, Th, and Pb) and click the button to "use TDI self calibration correction", click OK, then store this unknown sample as a setup (add to setup), then digitize something and specify to use that setup, TDI is NOT used.  It acquires as a TDI acquisition, but does not calculate the result using TDI until I go back into standard assignments and tell it to use TDI for those elements again.  I just did this with a monazite setup, activating TDI for these elements, then storing that as a setup, then digitizing an analysis using that setup.  When I look at the newly acquired data in analyze, going into standard assignments and clicking on U, then Th, then Pb, all of them now have the buttons selected to NOT use TDI.  So, we dutifully click each one and re-calculate. There is nothing we seem to be able to do to get it to do this properly, so every time we acquire a new unknown sample, we have to activate TDI use for each of these elements.

John Donovan

  • Administrator
  • Emeritus
  • *****
  • Posts: 3275
  • Other duties as assigned...
    • Probe Software
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #13 on: February 18, 2014, 03:38:17 PM »
Hi Mike,
OK, this is interesting.  When I tried it from the Acquire! window this morning with a new run and a new sample it acquired the TDI data and when I went in to look at the intensities, the TDI assignment was already specified as I showed above.  Maybe you're not "holding your tongue just right"?   ;)

Seriously, let's get to the bottom of this.  Try a new test run and new sample from scratch and see if you can reproduce the problem there.

Note: There is a "feature" that uses the existing TDI assignments for new samples (e.g., some turned off/some turned on), so maybe what you're seeing is based on that feature's behavior?

By the way if you select multiple samples, the default assignments that you see in the dialog are based on the *last* sample selected in the Analyze! sample list.

Edit: are the TDI assignments already made to the sample setup used for the acquisition?
« Last Edit: February 18, 2014, 08:48:03 PM by John Donovan »
John J. Donovan, Pres. 
(541) 343-3400

"Not Absolutely Certain, Yet Reliable"

Mike Jercinovic

  • Professor
  • ****
  • Posts: 92
    • UMass Geosciences Microprobe-SEM Facility
Re: Improving Time Dependent Intensity (TDI) Corrections
« Reply #14 on: February 23, 2014, 08:31:43 AM »
It's probably just us.  Here is the first example...
1) start new database
2) new unknown sample (in Acquire), call it monazite setup
3) select new sample from file, navigate to the last database where monazite was run, and pick up an unknown that used, and specified TDI
4) in Acquire, go to special options and make sure that the use TDI button is activated
5) go to analysis options and make sure the use TDI option is checked
6) go to Analyze and then into standard assignments, check whether TDI is activated for U, Th, Pb...it is not, so we activate TDI for each of these elements, click OK with each, then click OK for the main standard assignments window.
7) with this new unknown still highlighted, click to store it as a setup (in Analyze)
8) go to the Automate window and digitize a new unknown
9) digitize a 6-pt grid
10) specify for this unknown to use the just-stored setup (monazite setup)
11) run the newly digitized sample, making sure that the use specified setups button is active
12) the analysis completes, click OK
13) now go to standard assignments for the newly acquired unknown,
14) for U, Th, and Pb, it shows now that DO NOT USE TDI is active, so we have to then activate TDI (self cal) for each of these elements.

Just to be sure it did not actually do the calculated intensities with TDI even though the TDI buttons are not apparently active, you can run analyze before going back to check the standard assignments to see the results, then go into standard assignments and check the use TDI (self) buttons and re-run analyze.  Sure enough, the results change as they should (in this case to very slightly lower the intensities, as counts for these three elements are all slightly increasing with time).

I we now store this new unknown as a setup and use it for digitized samples, the manifestation is the same, TDI will not be active for U, Th, and Pb until we go back into standard assignments and re-specify TDI again.