Short Guide to the Multi-Point Background

1) Introduction

The Multi-Point Background (MPB) feature allows you to acquire background intensity from up to 12 positions on both the high and low side of a peak instead of the classical two-point background acquisition. The principle is to 1) measure several backgrounds on each side of the peak, 2) iteratively

determine the best background positions based on a fit model (linear, exponential or polynomial) to determine where the "true" background is present, and 3) interpolate the background value below the peak of interest to calculate the peak net intensity.

This MPB method is extremely useful when several peaks may potentially interfere with background position(s), or when a background needs to be defined as accurately as possible. Originally, this feature was requested for accurate U, Th and Pb analysis required for monazite dating at the University of Massachusetts, Amherst (M.L. Williams, M.J. Jercinovic and J. Allaz). This guide utilizes U and Pb measurement as an example, but any other elements may be considered. Only the setting and the processing of MPB are reviewed here, the rest of the setup for quantitative analysis is as described in Probe for EPMA help file, quick start manual and associated documents.

2) Setting MPB positions

Before setting up a MPB analysis, it is highly recommended to acquire a WDS step scan (using a count time per step top yield reasonable precision, say 5 to 30 seconds per point) to assist in determining the MPB positions.

There are two methods one can use the select the multi-point background positions. One can use the above wavescan sample to graphically specify the MPB positions using the Model Background dialog from the wavescan plot. Or one can manually enter the MPB positions determined from the above wavescan plot (or another method).

Graphical selection of MPB positions To select MPB positions graphically, first display the wavescan from the "Plot!" window by selecting "*Wavescans*" from the "*Sample List*" options, then select the wavescan to plot, then select the element spectrometer and intensity items, then click "*Output*". You should see something like the plot on the right:

Then adjust the size and shape of the

"Plot Graph Data" window and select the KLM markers that you want displayed (if desired). The KLM markers could be simply the "Analyzed Elements" or the "User Selected Lines" option marked in red outline.

For the latter option, click the Selected "Choose Lines" button to select the lines to

The "Periodic Table" button makes it easy to only select the specific elements you want to display in the "Plot Graph Data" window.

Once the selected lines or elements are selected simply click the "Graph Selected" button to plot the desired lines on the wavescan graph and seen to the left:

Now use the "Model Background" button to open the "Model Background" dialog to graphically display the background fitting options as seen here and then change the "Off-Peak Background Type" from "Linear" to "MultiPoint".

By selecting the "Low MultiPoint" and/or "High MultiPoint" drop down lists and using the "+/-" buttons one can control the placement of the MultiPoint backgrounds simply by clicking with the mouse as shown to the right.

Once you are finished you may end up with a selection of MPB positions as shown in the graph to the left.

Remember, these MPB positions are nominal in the sense that the intensities at these positions will be acquired but they will only be used in the iterated MultiPoint background fit to calculate the interpolated background intensity under the peak, if they meet the background model fit criteria.

display.

Manual entry of MPB positions

Alternatively one can simply note the MPB positions as absolute spectrometer positions or offsets and then from the "Analyze!" window, open the "*Elements/Cations*" dialog and click on the element for which the MPB background is desired (in this example, U M β). In this window...

- a) Check "*Multipoint*" in the "*Background type*" section and then in the "*Off-Peak Correction Type*" section.
- b) In "Acquire High (or Low)", enter the number of background intensity positions to acquire. Value must be between 1 and 12.
- c) In "*Iterate High (or Low)*", enter the number of points that will be used to interpolate the background value below the peak. Value must be between 1 and the value entered in "*Acquire High (or Low)*".

WARNING: for statistical reasons, the background time entered in the "Count times" window will be divided by 2. For instance, if you set the background time to 60 second and utilize 2 high side MPBs and 3 low side MPBs, the actual time for each multi-point background position will be

Enter Element F	roperties For:	u mb			OK
Element	X-Ray Line	Bragg Orde	r Cations	/ Oxygens	UK
U •	mb	• 1 •	• 1 •	2 🗸	Cancel
Leave the X-r Un-Analyze	ay Line Blar ed Element (nk to Indicate (Specified, by	an Cl	harge	Delete
Differe	ence or Stoid	chiometry)			Disable A
Parameters (not	e that Backgro	und Type can d	iffer for Stand	ards and Un	knowns)
Background Ty	ype	Off-Peak Entry		U: 04 D	lata farmera
C Off Peak		C Absolute Po	sition	ow Off-Pea	k Interferences
Multi-Point	1	Relative Off	set	Check All In	terfering Elemen
1 🔻	LPET	▼ 42448.0	103	6.00	-1042.0
2020 2022		1000		255	
BaseLine	Window	Gai	n 🔺 1320	Bias	Deadtime (us
BaseLine	Window 4.00	v Gai 895.00	n	Bias I.	Deadtime (us 1.65
BaseLine .56 Calculate E	Window 4.00 Impirical PHA	/ Gai 895.00 	n 1320 ize Sliv	Bias I. t Position	Deadtime (us 1.65 Detector Mod
BaseLine .56 Calculate E	Window 4.00 Empirical PHA Intial PHA Mod	9 Gai 895.00 	n 1320 ize Slit	Bias I. t Position	Deadtime (us 1.65 Detector Mod
BaseLine .56 Calculate F V Use Differer Integrated	Window [4.00 Empirical PHA Intensity Scan	Gai 895.00 Slit S e Initial Step	n ize Slit Size Minimu	Bias I. t Position T um Step Size	Deadtime (us 1.65 Detector Mod
BaseLine .56 Calculate E Integrated Use Integrated Use Integra	Window [4.00 Empirical PHA Intial PHA Mod Intensity Scan Inted Intensities ed Intensity Ste	e Gai 895.00 Slit S e Initial Step 150.509	n ize Sli Size Minimu 7.52	Bias L t Position T um Step Size 2543	Deadtime (us 1.65 Detector Mod Specified AP 1.00000
BaseLine .56 Calculate E Use Differe Integrated I Use Integra Use Inverte Off Peak Correc	Window [4.00 Empirical PHA Intersity Scan ted Intensity Ste d Intensity Ste tion Type	e Gai 895.00 Slit S e Initial Step pps 150.509	n ize Sli size Minimu 7.52	Bias t Position v um Step Size	Deadtime (us 1.65 Detector Mod Specified AP
BaseLine .56 Calculate I Use Differe Integrated I Use Inverte Off Peak Correc C Linear	Window [4.00 Empirical PHA Intial PHA Mod Intensity Scan Intensity Scan Intensity Stat Intensity Stat C A:	y Gai 895.00 Slit S e Initial Step 150.509 verage	n 1320 ize Sli v v Size Minima 7.52	Bias L t Position T um Step Size 1543	Deadtime (us 1.65 Detector Mod Specified API 1.00000
BaseLine .56 Calculate E Integrated I Use Integrated I Use Inverte Off Peak Correc C Linear C Exponential	Window [4.00 Empirical PHA Intial PHA Mod Intensity Scan Ited Intensities Intensity Ster tion Type C A	e Gai 895.00 Slit S e Initial Step 150.509	n 1320 ize Sli v 7 Size Minimu 7.52 C High Or Position1	Bias L Position U Step Size 1543 Ny Positio	Deadtime (us 1.65 Detector Mod Specified API 1.00000 C Low Only n2 Position:
BaseLine .56 Calculate E Integrated I Use Integrated I Use Inverte Off Peak Correc C Linear C Exponential	Window 4.00 Empirical PHA Intensity Scan Inted Intensities de Intensity Ste tion Type C A: 7.0000 1.000	e Gai 895.00 Slit S e Initial Step 150.509 verage	n 1320 ize Slii • Size Minim 7.52 C High Or Position1 40633.7	Bias t Position w Step Size 2543 Ny Positio 41319.1	Deadtime (us 1.65 Detector Mod Specified API 1.0000 C Low Only n2 Position3 43900.6
BaseLine .56 Calculate E V Use Differe Integrated Use Integra Use Integra Use Integra C Use Integra C Linear C Linear C Slope (Hi)	Window 4.00 Empirical PHA Intensity Scan Inted Intensity Ste d Intensity Ste C A: 7.0000 1.0000	Gai Sit S Sit S Initial Step Initial Step Initial Step Initial Step Verage C Polynomial	n 1320 ize Slii v 7.52 C High Or Position1 40633.7 Coeff1	Bias t Position T am Step Size (543 Ny Positio 41319.0 Coeff	Deadtime (us 1.65 Detector Mod Specified API 1.00000 C Low Only n2 Position: 3 43900.6 2 Coeff3
BaseLine .56 Calculate E Integrated Use Integra Use Integra Use Integra Calculate E Use Integra Calculate E Calculate E Use Integra Calculate E Calculate E Calc	Window 4.00 Empirical PHA Intensity Scan ted Intensity d Intensity Ste tion Type C A: 7.0000 1.0000	v Gai 895.00 Slit S e Initial Step 150.509 verage C Polynomial 1	n 1320 ize Sli Size Minimu 7.52 C High Or Position1 40633.7 Coeff1 4.16842	Bias I Position I Step Size State Position 41319.1 Coeff 00008	Deadtime (us 1.65 Detector Mod Specified API 1.00000 C Low Only n2 Position: 3 4390.6 2 Coeff3 .0000000
BaseLine 56 Calculate E 7 Use Differe Integrated Use Integra Use Integra Use Integra Calculate E Use Integra Calculate E Calculate E Cal	Vindow A.00 Philode Higher Control Vindow Philode Higher Control Vindow	y Gai 895.00 Slit S e Initial Step 150.509 verage	n 1320 ize Sli v . size Minimu v . f.52 C High Or Position1 4.0633.7 Coeff1 4.16842 High Ac	Bias Position The Size Big Position Position Coeff Coeff Coeff Coeff Coeff Coeff	Deadtime (us 1.65 Detector Mod Specified API 1.00000 C Low Only n2 Position: 3 43900.6 2 Coeff3 1 0.000000 Rerate Lo
BaseLine .56 Calculate F Juse Differei Integrated Use Integrated Use Integrated Use Integrated Cuse	Vindow 4.00 Empirical PHA Intial PHA Mod Intensity Ster C Ar 7.0000 1.0000 1.0000 Acquire Hig 4	v Gai 895.00 Slit S e Initial Step 150.509 verage C Polynomial 1 1 1 1 1 1 2	n 1320 ize Sli Size Minimu Size Minimu 7.52 Child 4.0633.7 Coeffi 4.16842	Bias t Position w Step Size 543 by Positio 41319.1 Coeff: -00008 cquire Low 4	Deadtime (us 1.65 Detector Mod • <
BaseLine .56 Calculate f Integrated I Use Integra Use Inverte Off Peak Correc Linear Exponential Slope (Hi) Slope (Lo) Multi-Point Fit Type Exponent	Vindow 4.00 Empirical PHA Mod Intai PHA Mod Intensity Ste C A 7.0000 1.0000 1.0000 Acquire Hig 4 High I	y Gai 895.00 Slit S e Initial Step pps 150.509 verage C Polynomial 1 gh Iterate 2 Multi-Point Positi	n 1320 ize Sli Size Minimi Size Minimi Size T.52 C High Or Position1 40633.7 Coeff1 4.16842	Bias I Position T aum Step Size 543 Ny Positio 41319.2 Coeff: -00008 cuire Low 4 Low Multi-	Deadtime (us 1.65 Detector Mod Specified API 1.00000 C Low Only n2 Position: 2 Coeff3 14390.6 2 Coeff3 1.00000 Iterate Lo 2 Point Positions

30 seconds each on the two high side positions and 30 seconds each on the three low side positions.

- d) Choose the MPB fit type (linear, polynomial or exponential).
- e) In the section "*High (and Low) Multi-Point Positions*", enter the background positions:
 - Select the position to update in the list menu on the left side of each sub-section (High or Low).
 - Enter the value you want in the box on the right; click the "<" button to validate your choice.
 - Repeat the operation for the number of points defined in "Acquire High (and Low)".
 - If you have chosen to acquire four points on the high (or low) side, you just need to update the first four values from the list; the other values will be ignored.
 - The "Set To Default" button sets the background positions to default values defined in the program.
- f) Click "OK" when everything is ready. The program will display the MPB positions and offsets in the log window for confirmation:

ELEM:	u mb	k kb	si ka	th ma	sr la	y la	p ka	s ka	ca ka	pb mb	pb mb	as ka	ho lb	yb la	tm la	er la	gd lb	dy la	tb la	sm lb	eu la	pr lb	nd la	ce la	la la
MULLO: 39	897.0		45	5663.0						55280.0	55259.0														
MULLO: 40	097.0		45	5863.0						55400.0	55379.0														
MULLO: 40	397.0		46	6063.0						56670.0	56649.0														
MULLO: 40	677.0		46	6163.0						56930.0	56909.0														
MULLO: 41	157.0									57300.0	57279.0														
MULLO:										57520.0	57499.0														
MLOOFF -2	550.0		1	1600.0						-2700.0	-2700.0														
MLOOFF -2	350.0		1	1400.0						-2580.0	-2580.0														
MLOOFF -2	050.0		1	1200.0						-1310.0	-1310.0														
MLOOFF -1	770.0		1	1100.0						-1050.0	-1050.0														
MLOOFF -1	290.0									-680.00	-680.00														
MLOOFF										-460.00	-460.00														
ELEM:	ս ախ	k kh	si ka	th ma	ar la	v la	n ka	a ka	ca ka	ph mh	ph mh	as ka	ho lb	vh la	tm la	er la	ad lb	dv la	th la	sm lb	eu la	pr lb	nd la	ce la	la la
MACOHT	5			5		2	F			6	6											F			
MACOLO	5			4						6	6														
MILTHI	2			2						2	2														
MULTIO	â			2						2	2														-
MULEIT	â			2						2	2														
PIOLPII	4			4						2	2														

3) Re-Processing MPB

Once the MPB sample intensities have been acquired, the user can simply analyze the data from the Analyze! window with no further interaction. The program will automatically optimize the acquired MPB intensities to determines the best fit using the selected fit model (linear, exponential or polynomial). However, sometimes it is interesting to graphically evaluate the MPB fitting manually.

To see how the MPB intensities are being fitted by the program (and to manually override the program optimization if desired), simply open the MPB results window in the "*Run | Display Multipoint Background Intensities*" menu...

- a) Select an unknown to check the background.
- b) Select an analysis line in this unknown.

- c) Select an element to show the results of the MPB acquisition. In this example, the Pb M α on spectrometer 4 is selected. The program will automatically fit the MPB intensities based on the selected fit model and display the iterated best fit. This is done by iteratively removing one point at a time (the one with the highest fit variance) from the measured MPB intensities until only the number of iterated points specified remains.
- d) Check top or bottom boxes below the plot to force including or excluding a value, respectively. Once you are pleased with the MPB fit options, click on "Assign Flags To This Data Only" or "Assign Flags To All Data In Sample" buttons to validate your choice for the current or for all measurements in the sample, respectively. In this example, we have excluded the two backgrounds situated on the left side of the peak (indicated with a red vertical line), while all other values are included.
- e) Enter the number of points to iterate from high and low background in the "*Iterate Low (and High)*" boxes. The default value is the one you entered in your setup. Naturally, the number of points you excluded may limit this value, i.e. if you exclude 2 of 5 points you cannot iterate more than 3 points. You can also modify the fit type in the "*Bgd Fit Type*" list.
- f) Click on the "Assign Fit To Selected Channel For All Lines" button to validate your choice. This will apply the number of iteration points and the background fit type to ALL measurements of this specific element from the current analysis (here, applied to analysis rows 1 to 5).
- g) By default, a fitting curve will be interpolated using the number of points you entered in "*Iterate Low (or High)*". Only the lowest value will be used to fit this curve. If a point is anomalously low, use the checkbox below the graph to exclude this point.
- h) The window on the right of the plot summarizes the analysis setup. On the bottom of this window, the interpolated background intensity value is given (i.e. background value at the peak position).

- i) If you have acquired a wavescan, you may overlay it on the MPB results to obtain a plot similar to the one displayed at the beginning of this document:
 - Click on "*Load Wavescan*" and select the wavescan you want: click the first line of the wavescan, hold [shift] key and click the last entry named "continued" to select the entire wavescan.
 - In the lower box, select the element on which you want to overlay a wavescan (here Pb M α on SP 4) and click on *"Close"*.
 - To remove the overlay, click on *"Unselect overlay"* button.
- You can copy the plot results to the clipboard or export the data for the current plot in a text file.
- To export all MPB data from your current run to a single ASCII file or Excel spreadsheet, choose the "*Output / Save Multi-Point Position and Intensity Data*" menu.

Wa	45	continued		1
Wa	46	continued		
Wa	47	continued		
₩a	49	GdPO4 std		
₩a	50	continued		
Wa	51	continued		
Wa	52	continued		
₩a	53	continued		
₩a	54	continued		
Wa	55	NdPO4 std		
Wa	56	continued		
Wa	57	continued		
Wa	58	continued		
Wa	59	continued		Ē
wa	60	continued		
wa	61	Moacyr		
wa	62	continued		1
wa	64	continued		
wa	65	continued		
Wa	66	continued		
Umb [hma bma ula	Spe Spe	ectro 1 LPET (424- ectro 2 LPET (472 ectro 3 LPET (603 ectro 4 LPET (603 ctro 5 LLIF (52674	Select a wavesca sample, then select element to plot, then the Overlay Waves button 600 points loade	d d

- <u>Note:</u> The plot window in the MultiPoint plot dialog works as any other plot window in Probe for EPMA. You can zoom in by clicking-and-dragging, change plot setting with the buttons on the top... You can also zoom on the multipoint values or on the wavescan using on of the buttons "Zoom Multipoint" or "Zoom Wavescan"
- <u>Note:</u> A versatility of the MPB feature is that you can still come back to your element setup (after analysis) and change the background setting from MPB to the normal off-peak background interpolation using linear or exponential or... Then, Probe for EPMA will re-calculate the background using the total MPB intensities on low and high side of the peak and get a two point linear or exponential fit.

By Julien Allaz and John Donovan 05/2010